BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 3138284)

  • 1. Spontaneous oscillatory contraction of sarcomeres in skeletal myofibrils.
    Okamura N; Ishiwata S
    J Muscle Res Cell Motil; 1988 Apr; 9(2):111-9. PubMed ID: 3138284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of tension development by MgADP and Pi without Ca2+. Role in spontaneous tension oscillation of skeletal muscle.
    Shimizu H; Fujita T; Ishiwata S
    Biophys J; 1992 May; 61(5):1087-98. PubMed ID: 1600074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronous behavior of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions.
    Yasuda K; Shindo Y; Ishiwata S
    Biophys J; 1996 Apr; 70(4):1823-9. PubMed ID: 8785342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous oscillatory contraction (SPOC) of sarcomeres in skeletal muscle.
    Ishiwata S; Okamura N; Shimizu H; Anazawa T; Yasuda K
    Adv Biophys; 1991; 27():227-35. PubMed ID: 1755363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous oscillation of tension and sarcomere length in skeletal myofibrils. Microscopic measurement and analysis.
    Anazawa T; Yasuda K; Ishiwata S
    Biophys J; 1992 May; 61(5):1099-108. PubMed ID: 1600075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of adenosine triphosphate hydrolysis by shortening myofibrils from rabbit psoas muscle.
    Ohno T; Kodama T
    J Physiol; 1991 Sep; 441():685-702. PubMed ID: 1816389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the kinetics of Ca2+-regulated contraction and relaxation from myofibril studies.
    Stehle R; Solzin J; Iorga B; Poggesi C
    Pflugers Arch; 2009 Jun; 458(2):337-57. PubMed ID: 19165498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous tension oscillation (SPOC) of muscle fibers and myofibrils minimum requirements for SPOC.
    Ishiwata S; Anazawa T; Fujita T; Fukuda N; Shimizu H; Yasuda K
    Adv Exp Med Biol; 1993; 332():545-54; discussion 555-6. PubMed ID: 8109366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillatory contraction of single sarcomere in single myofibril of glycerinated, striated adductor muscle of scallop.
    Tameyasu T
    Jpn J Physiol; 1994; 44(3):295-318. PubMed ID: 7823419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic behaviour of half-sarcomeres during and after stretch in activated rabbit psoas myofibrils: sarcomere asymmetry but no 'sarcomere popping'.
    Telley IA; Stehle R; Ranatunga KW; Pfitzer G; Stüssi E; Denoth J
    J Physiol; 2006 May; 573(Pt 1):173-85. PubMed ID: 16527855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanochemical coupling in muscle: attempts to measure simultaneously shortening and ATPase rates in myofibrils.
    Lionne C; Travers F; Barman T
    Biophys J; 1996 Feb; 70(2):887-95. PubMed ID: 8789106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basis of passive tension and stiffness in isolated rabbit myofibrils.
    Bartoo ML; Linke WA; Pollack GH
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C266-76. PubMed ID: 9252465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residual force enhancement in myofibrils and sarcomeres.
    Joumaa V; Leonard TR; Herzog W
    Proc Biol Sci; 2008 Jun; 275(1641):1411-9. PubMed ID: 18348966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATPase and shortening rates in frog fast skeletal myofibrils by time-resolved measurements of protein-bound and free Pi.
    Barman T; Brune M; Lionne C; Piroddi N; Poggesi C; Stehle R; Tesi C; Travers F; Webb MR
    Biophys J; 1998 Jun; 74(6):3120-30. PubMed ID: 9635765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contractility of single myofibrils of rabbit skeletal muscle studied at various MgATP concentrations.
    Wakayama J; Yamada T
    Jpn J Physiol; 2000 Oct; 50(5):533-42. PubMed ID: 11120920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural studies of glycerinated skeletal muscle. I. A-band length and cross-bridge period in ATP-contracted fibers.
    Dreizen P; Herman L; Berger JE
    Adv Exp Med Biol; 1984; 170():135-55. PubMed ID: 6741692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ADP on cross-bridge-dependent activation of myofibrillar thin filaments.
    Zhang D; Yancey KW; Swartz DR
    Biophys J; 2000 Jun; 78(6):3103-11. PubMed ID: 10827987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contractile characteristics of sarcomeres arranged in series or mechanically isolated from myofibrils.
    Rassier DE; Pavlov I
    Adv Exp Med Biol; 2010; 682():123-40. PubMed ID: 20824523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcomere length non-uniformities dictate force production along the descending limb of the force-length relation.
    Haeger R; de Souza Leite F; Rassier DE
    Proc Biol Sci; 2020 Oct; 287(1937):20202133. PubMed ID: 33109011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments.
    Horowits R; Podolsky RJ
    J Cell Biol; 1987 Nov; 105(5):2217-23. PubMed ID: 3680378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.