These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31383111)

  • 1. Impacts of Mo Promotion on Nickel-Based Catalysts for the Synthesis of High Quality Carbon Nanotubes Using CO₂ as the Carbon Source.
    Li S; Sun S; Chu W; Li J; Wang J; Hu J; Jiang C
    J Nanosci Nanotechnol; 2020 Feb; 20(2):1109-1117. PubMed ID: 31383111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotubes synthesis over coal ash based catalysts using polypropylene waste via CVD process: Influence of catalyst and reaction temperature.
    Chitriv SP; Saini V; Ratna D; P VR
    J Environ Manage; 2024 Aug; 366():121881. PubMed ID: 39018861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low temperature multi-catalytic growth and growth mechanism of carbon nanotubes on carbon fiber surfaces.
    Yao Z; Xia A; Wang D; Wang C
    Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37783207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature programmed CVD: a novel technique to investigate carbon nanotube synthesis on FeMo/MgO catalysts.
    Teixeira AP; Lemos BR; Magalhães LA; Ardisson JD; Lago RM; Furtado CA; Santos AP
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2661-7. PubMed ID: 22755105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of length-controlled aerosol carbon nanotubes and their dispersion stability in aqueous solution.
    Moon YK; Lee J; Lee JK; Kim TK; Kim SH
    Langmuir; 2009 Feb; 25(3):1739-43. PubMed ID: 19132930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes.
    Zhou LP; Ohta K; Kuroda K; Lei N; Matsuishi K; Gao L; Matsumoto T; Nakamura J
    J Phys Chem B; 2005 Mar; 109(10):4439-47. PubMed ID: 16851515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Carbon Nanotubes Growth Using Nickel/Ferrocene-Hybridized Catalyst.
    Lim YD; Avramchuck AV; Grapov D; Tan CW; Tay BK; Aditya S; Labunov V
    ACS Omega; 2017 Sep; 2(9):6063-6071. PubMed ID: 31457855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian Optimization of Wet-Impregnated Co-Mo/Al
    Shin S; Song H; Shin YS; Lee J; Seo TH
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Synergistic Effect of a Bimetallic Catalyst for the Synthesis of Carbon Nanotube Aerogels and their Predominant Chirality.
    Moon SY; Kim WS
    Chemistry; 2019 Oct; 25(59):13635-13639. PubMed ID: 31407390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts.
    Dunens OM; MacKenzie KJ; Harris AT
    Environ Sci Technol; 2009 Oct; 43(20):7889-94. PubMed ID: 19921910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corn Cob Char as Catalyst Support for Developing Carbon Nanotubes from Waste Polypropylene Plastics: Comparison of Activation Techniques.
    Modekwe HU; Moothi K; Daramola MO; Mamo MA
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO
    Alabi WO
    Environ Pollut; 2018 Nov; 242(Pt B):1566-1576. PubMed ID: 30166203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing Ultralong Carbon Nanotube Growth from Methane over Mono- and Bi-Metallic Iron Chloride Catalysts.
    Yick T; Gangoli VS; Orbaek White A
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterning of catalysts for the selective growth of carbon nanotubes using laser irradiation of nickel nitrate.
    Park MH; Lee JW; Lee YI; Lee JH; Hwang JH; Kim HK; Yang CW
    J Nanosci Nanotechnol; 2011 Jan; 11(1):602-5. PubMed ID: 21446506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient growth of horizontally aligned single-walled carbon nanotubes by chemical vapor deposition over MgO-supported bimetallic co-based catalysts.
    Lim SH; Lin J; Luo Z; Shen Z
    J Nanosci Nanotechnol; 2011 Jan; 11(1):143-7. PubMed ID: 21446418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes.
    Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D
    J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of carbon source and Fe-catalyst support on the growth of multi-walled carbon nanotubes.
    Donato MG; Galvagno S; Lanza M; Messina G; Milone C; Piperopoulos E; Pistone A; Santangelo S
    J Nanosci Nanotechnol; 2009 Jun; 9(6):3815-23. PubMed ID: 19504925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Interplay between Whey Protein Fibrils with Carbon Nanotubes or Carbon Nano-Onions.
    Kang N; Hua J; Gao L; Zhang B; Pang J
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33525699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.