BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31383118)

  • 1. Photoelectrocatalytic Degradation of Methylene Blue Using ZnO Nanorods Fabricated on Silicon Substrates.
    Rosa APPD; Cavalcante RP; Silva TFD; Gozzi F; Byrne C; McGlynn E; Casagrande GA; Oliveira SC; Junior AM
    J Nanosci Nanotechnol; 2020 Feb; 20(2):1177-1188. PubMed ID: 31383118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of growth conditions on properties of CBD synthesized ZnO nanorods grown on ultrasonic spray pyrolysis deposited ZnO seed layers.
    Mosalagae K; Murape DM; Lepodise LM
    Heliyon; 2020 Jul; 6(7):e04458. PubMed ID: 32715133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates.
    Farhat OF; Halim MM; Abdullah MJ; Ali MK; Allam NK
    Beilstein J Nanotechnol; 2015; 6():720-5. PubMed ID: 25821712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and Characterization of High-Quality UV Photodetectors Based ZnO Nanorods Using Traditional and Modified Chemical Bath Deposition Methods.
    Abdulrahman AF; Ahmed SM; Barzinjy AA; Hamad SM; Ahmed NM; Almessiere MA
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application.
    Azam A; Babkair SS
    Int J Nanomedicine; 2014; 9():2109-15. PubMed ID: 24812511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the Degradation Effect of Methylene Blue for ZnO Nanorods Synthesized on Silicon and Indium Tin Oxide Substrates.
    Peng G; Chou NN; Lin YS; Yang CF; Meen TH
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of electrochemical detection performance towards 2,4,6-trinitrotoluene by a bottom layer of ZnO nanorod arrays.
    Moon S; Yoo J; Lee W; Lee K
    Heliyon; 2023 May; 9(5):e15880. PubMed ID: 37215872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photovoltaic performance of dye-sensitized solar cell low temperature growth of ZnO nanorods using chemical bath deposition.
    Lee JG; Choi YC; Lee DK; Ahn KS; Kim JH
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3469-72. PubMed ID: 22849148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition.
    Bidier SA; Hashim MR; Al-Diabat AM; Bououdina M
    Physica E Low Dimens Syst Nanostruct; 2017 Apr; 88():169-173. PubMed ID: 28373813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoration of Zinc Oxide Nanorods into the Surface of Activated Carbon Obtained from Agricultural Waste for Effective Removal of Methylene Blue Dye.
    Shrestha P; Jha MK; Ghimire J; Koirala AR; Shrestha RM; Sharma RK; Pant B; Park M; Pant HR
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33322491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of ZnO nanostructures grown on Si and SiO2 substrates.
    Lee S; Park E; Lee J; Park T; Lee SH; Kim JY; Yi W
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6264-8. PubMed ID: 24205642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly nuclei with a preferred orientation at the extended hydrophobic surface toward textured growth of ZnO nanorods in aqueous chemical bath deposition.
    Yu CH; Lo CC; Chen KH; Chang YR; Chen CW; Wen CY
    Nanotechnology; 2021 Apr; 32(17):175603. PubMed ID: 33455957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of Scenedesmus-fabricated ZnO nanorods in photocatalytic reduction of methylene blue under direct sunlight: kinetics and mechanism.
    Mahana A; Mehta SK
    Environ Sci Pollut Res Int; 2021 Jun; 28(22):28234-28250. PubMed ID: 33533000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic activity and photoelectrochemical properties of Ag/ZnO core/shell nanorods under low-intensity white light irradiation.
    Kadhim MJ; Mahdi MA; Hassan JJ; Al-Asadi AS
    Nanotechnology; 2021 May; 32(19):195706. PubMed ID: 33545705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelectrochemical Green Hydrogen Production Utilizing ZnO Nanostructured Photoelectrodes.
    Al-Saeedi SI
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H
    da Rosa APP; Cavalcante RP; da Silva DA; da Silva LM; da Silva TF; Gozzi F; McGlynn E; Brady-Boyd A; Casagrande GA; Wender H; de Oliveira SC; Junior AM
    Sci Total Environ; 2019 Feb; 651(Pt 2):2845-2856. PubMed ID: 30463137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of novel AuPd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity.
    Lu Y; Zhang J; Ge L; Han C; Qiu P; Fang S
    J Colloid Interface Sci; 2016 Dec; 483():146-153. PubMed ID: 27552423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled, aligned ZnO nanorod buffer layers for high-current-density, inverted organic photovoltaics.
    Rao AD; Karalatti S; Thomas T; Ramamurthy PC
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16792-9. PubMed ID: 25238197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation.
    Zhai C; Zhu M; Ren F; Yao Z; Du Y; Yang P
    J Hazard Mater; 2013 Dec; 263 Pt 2():291-8. PubMed ID: 24091125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-Ablated ZnO Nanoparticles and Their Photocatalytic Activity toward Organic Pollutants.
    Mintcheva N; Aljulaih AA; Wunderlich W; Kulinich SA; Iwamori S
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29970798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.