These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31383187)

  • 1. Sintering Behaviors of Au Nanopowders with Different Particle Sizes: A Real-Time Synchrotron X-ray Scattering Study.
    Lee JH; Park SH; Cho TS
    J Nanosci Nanotechnol; 2020 Jan; 20(1):415-419. PubMed ID: 31383187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation Behaviors of Aluminum Nanopowders with Different Particle Sizes: A Real-Time Synchrotron X-ray Scattering Study.
    Liang NN; Park SH; Cho TS
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1784-1788. PubMed ID: 33404448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation Behaviors of Co, Cr, and Ni Nanopowders: A Real-Time Synchrotron X-ray Scattering Study.
    Park SH; Lee JH; Cho TS
    J Nanosci Nanotechnol; 2020 Jan; 20(1):312-315. PubMed ID: 31383172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation and melting of aluminum nanopowders.
    Trunov MA; Umbrajkar SM; Schoenitz M; Mang JT; Dreizin EL
    J Phys Chem B; 2006 Jul; 110(26):13094-9. PubMed ID: 16805619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallization of Au-Si/glass thin film: a real-time synchrotron X-ray scattering study.
    Cho TS; Kim JW
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3646-9. PubMed ID: 22849187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural phase transition of tungsten-doped vanadium dioxide nanopowders prepared by thermolysis.
    Peng Z; Jiang W; Liu H
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1417-21. PubMed ID: 18468166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DC-Bias-Superposition Characteristics of Ni0.4Zn0.2Mn0.4Fe2O4 Nanopowders Synthesized by Auto-Combustion.
    Sadhana K; Sandhya R; Praveena K
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4552-7. PubMed ID: 26369079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thickness dependence of the crystallization of Au/glass ultrathin films.
    Cho TS; Kim JW
    J Nanosci Nanotechnol; 2013 May; 13(5):3711-4. PubMed ID: 23858933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step synthesis of core-shell (Ce0.7Zr0.3O2)(x)(Al2O3)(1-x) [(Ce0.7Zr0.3O2)@Al2O3] nanopowders via liquid-feed flame spray pyrolysis (LF-FSP).
    Kim M; Laine RM
    J Am Chem Soc; 2009 Jul; 131(26):9220-9. PubMed ID: 19566096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spark plasma sintering of hydroxyapatite powders.
    Gu YW; Loh NH; Kho KA; Tor SB; Cheang P
    Biomaterials; 2002 Jan; 23(1):37-43. PubMed ID: 11762852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite Nitride Nanoceramics in the System Titanium Nitride (TiN)-Aluminum Nitride (AlN) through High Pressure and High Temperature Sintering of Synthesis-Mixed Nanocrystalline Powders.
    Drygaś M; Lejda K; Janik JF; Musielak B; Gierlotka S; Stelmakh S; Pałosz B
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CaCu3Ti4O12 nanoparticles using polyvinyl pyrrolidone: synthesis and dielectric properties.
    Masingboon C; Maensiri S; Yamwong T
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8670-6. PubMed ID: 22400241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Sintering Temperatures on Grain Coarsening Behaviors and Mechanical Properties of W-NiTi Heavy Tungsten Alloys.
    Shao Y; Yu W; Wu J; Ma H
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radio frequency (rf) plasma spheroidized HA powders: powder characterization and spark plasma sintering behavior.
    Xu JL; Khor KA; Gu YW; Kumar R; Cheang P
    Biomaterials; 2005 May; 26(15):2197-207. PubMed ID: 15585221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analyses of the IV group oxides additives influence on the sintering kinetics of zirconia nanopowders.
    Lakusta M; Danilenko I; Volkova G; Loladze L; Burchovetskiy V; Konstantinova T
    PLoS One; 2018; 13(7):e0200869. PubMed ID: 30052673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Obtaining of Ni/NiO nanopowder from aqua solutions of Ni(CH3COO)2 ammonia complexes.
    Dulina I; Lobunets T; Klochkov L; Ragulya A
    Nanoscale Res Lett; 2015; 10():156. PubMed ID: 25883542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TiC nanocrystal formation from carburization of laser-grown Ti/O/C nanopowders for nanostructured ceramics.
    Leconte Y; Maskrot H; Herlin-Boime N; Porterat D; Reynaud C; Gierlotka S; Swiderska-Sroda A; Vicens J
    J Phys Chem B; 2006 Jan; 110(1):158-63. PubMed ID: 16471514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of powders and transient-liquid-phase sintering.
    Taylor SL; Ibeh AJ; Jakus AE; Shah RN; Dunand DC
    Acta Biomater; 2018 Aug; 76():359-370. PubMed ID: 29890266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and Spark Plasma Sintering of Magnetic alpha-Fe/MgO Nanocomposite by Mechanical Alloying.
    Lee CH
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1558-61. PubMed ID: 27433621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering.
    Raynaud S; Champion E; Bernache-Assollant D
    Biomaterials; 2002 Feb; 23(4):1073-80. PubMed ID: 11791910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.