These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
13261 related articles for article (PubMed ID: 31383477)
1. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
2. Data-Driven Blood Glucose Pattern Classification and Anomalies Detection: Machine-Learning Applications in Type 1 Diabetes. Woldaregay AZ; Årsand E; Botsis T; Albers D; Mamykina L; Hartvigsen G J Med Internet Res; 2019 May; 21(5):e11030. PubMed ID: 31042157 [TBL] [Abstract][Full Text] [Related]
3. Reinforcement learning application in diabetes blood glucose control: A systematic review. Tejedor M; Woldaregay AZ; Godtliebsen F Artif Intell Med; 2020 Apr; 104():101836. PubMed ID: 32499004 [TBL] [Abstract][Full Text] [Related]
4. Telemedicine Services for the Arctic: A Systematic Review. Woldaregay AZ; Walderhaug S; Hartvigsen G JMIR Med Inform; 2017 Jun; 5(2):e16. PubMed ID: 28659257 [TBL] [Abstract][Full Text] [Related]
5. Minimizing postprandial hypoglycemia in Type 1 diabetes patients using multiple insulin injections and capillary blood glucose self-monitoring with machine learning techniques. Oviedo S; Contreras I; Bertachi A; Quirós C; Giménez M; Conget I; Vehi J Comput Methods Programs Biomed; 2019 Sep; 178():175-180. PubMed ID: 31416546 [TBL] [Abstract][Full Text] [Related]
6. The Effectiveness of Wearable Devices Using Artificial Intelligence for Blood Glucose Level Forecasting or Prediction: Systematic Review. Ahmed A; Aziz S; Abd-Alrazaq A; Farooq F; Househ M; Sheikh J J Med Internet Res; 2023 Mar; 25():e40259. PubMed ID: 36917147 [TBL] [Abstract][Full Text] [Related]
7. Diabetes technology and treatments in the paediatric age group. Shalitin S; Peter Chase H Int J Clin Pract Suppl; 2011 Feb; (170):76-82. PubMed ID: 21323816 [TBL] [Abstract][Full Text] [Related]
8. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work. Salman OH; Taha Z; Alsabah MQ; Hussein YS; Mohammed AS; Aal-Nouman M Comput Methods Programs Biomed; 2021 Sep; 209():106357. PubMed ID: 34438223 [TBL] [Abstract][Full Text] [Related]
9. A review of personalized blood glucose prediction strategies for T1DM patients. Oviedo S; Vehí J; Calm R; Armengol J Int J Numer Method Biomed Eng; 2017 Jun; 33(6):. PubMed ID: 27644067 [TBL] [Abstract][Full Text] [Related]
10. Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction. Rabby MF; Tu Y; Hossen MI; Lee I; Maida AS; Hei X BMC Med Inform Decis Mak; 2021 Mar; 21(1):101. PubMed ID: 33726723 [TBL] [Abstract][Full Text] [Related]
11. Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials. Donmazov S; Saruhan EN; Pekkan K; Piskin S Cardiovasc Eng Technol; 2024 Oct; 15(5):522-549. PubMed ID: 38956008 [TBL] [Abstract][Full Text] [Related]
12. A personalized blood glucose level prediction model with a fine-tuning strategy: A proof-of-concept study. Seo W; Park SW; Kim N; Jin SM; Park SM Comput Methods Programs Biomed; 2021 Nov; 211():106424. PubMed ID: 34598081 [TBL] [Abstract][Full Text] [Related]
13. Multi-Hour Blood Glucose Prediction in Type 1 Diabetes: A Patient-Specific Approach Using Shallow Neural Network Models. Kushner T; Breton MD; Sankaranarayanan S Diabetes Technol Ther; 2020 Dec; 22(12):883-891. PubMed ID: 32324062 [No Abstract] [Full Text] [Related]
14. A Novel Approach for Continuous Health Status Monitoring and Automatic Detection of Infection Incidences in People With Type 1 Diabetes Using Machine Learning Algorithms (Part 2): A Personalized Digital Infectious Disease Detection Mechanism. Woldaregay AZ; Launonen IK; Albers D; Igual J; Årsand E; Hartvigsen G J Med Internet Res; 2020 Aug; 22(8):e18912. PubMed ID: 32784179 [TBL] [Abstract][Full Text] [Related]
15. Continuous Glucose Monitoring Sensors for Diabetes Management: A Review of Technologies and Applications. Cappon G; Vettoretti M; Sparacino G; Facchinetti A Diabetes Metab J; 2019 Aug; 43(4):383-397. PubMed ID: 31441246 [TBL] [Abstract][Full Text] [Related]
16. A glucose model based on support vector regression for the prediction of hypoglycemic events under free-living conditions. Georga EI; Protopappas VC; Ardigò D; Polyzos D; Fotiadis DI Diabetes Technol Ther; 2013 Aug; 15(8):634-43. PubMed ID: 23848178 [TBL] [Abstract][Full Text] [Related]
17. A computational proof of concept of a machine-intelligent artificial pancreas using Lyapunov stability and differential game theory. Greenwood NJ; Gunton JE J Diabetes Sci Technol; 2014 Jul; 8(4):791-806. PubMed ID: 25562888 [TBL] [Abstract][Full Text] [Related]
18. Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only. Prendin F; Del Favero S; Vettoretti M; Sparacino G; Facchinetti A Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33673415 [TBL] [Abstract][Full Text] [Related]
19. Development and Evaluation of a Mobile Personalized Blood Glucose Prediction System for Patients With Gestational Diabetes Mellitus. Pustozerov E; Popova P; Tkachuk A; Bolotko Y; Yuldashev Z; Grineva E JMIR Mhealth Uhealth; 2018 Jan; 6(1):e6. PubMed ID: 29317385 [TBL] [Abstract][Full Text] [Related]