BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 313835)

  • 21. The shortened spinal cord in tetraodontiform fishes.
    Uehara M; Hosaka YZ; Doi H; Sakai H
    J Morphol; 2015 Mar; 276(3):290-300. PubMed ID: 25388857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High affinity amino acid transport by frog spinal cord slices.
    Davidoff RA; Adair R
    J Neurochem; 1975 Mar; 24(3):545-52. PubMed ID: 234521
    [No Abstract]   [Full Text] [Related]  

  • 23. gamma-Hydroxybutyric acid is not a GABA-mimetic agent in the spinal cord.
    Osorio I; Davidoff RA
    Ann Neurol; 1979 Aug; 6(2):111-6. PubMed ID: 227319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GABA and glycine transport in frog CNS: high affinity uptake and potassium-evoked release in vitro.
    Davidoff RA; Adair R
    Brain Res; 1976 Dec; 118(3):403-15. PubMed ID: 12856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Gaba- and glycine-immunoreactive synapses in the spinal cord of the frog Rana temporaria].
    Adanina VO; Rio JP; Adanina AS; Reperant J; Veselkin NP
    Tsitologiia; 2010; 52(7):537-48. PubMed ID: 20799618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uptake of gamma-aminobutyric acid and glycine by synaptosomes from postmortem human brain.
    Hardy JA; Barton A; Lofdahl E; Cheetham SC; Johnston GA; Dodd PR
    J Neurochem; 1986 Aug; 47(2):460-7. PubMed ID: 3734788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pharmacology and ionic dependency of amino acid responses in the frog spinal cord.
    Barker JL; Nicoll RA
    J Physiol; 1973 Jan; 228(2):259-77. PubMed ID: 4346988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reissner's fiber in the sacral cord and filum terminale of the possum Trichosurus vulpecula: a light, scanning, and electron microscopic study.
    Tulsi RS
    J Comp Neurol; 1982 Oct; 211(1):11-20. PubMed ID: 7174881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective uptake of (3H)beta-alanine by glia: association with glial uptake system for GABA.
    Schon F; Kelly JS
    Brain Res; 1975 Mar; 86(2):243-57. PubMed ID: 234775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutual inhibition kinetic analysis of gamma-aminobutyric acid, taurine, and beta-alanine high-affinity transport into neurons and astrocytes: evidence for similarity between the taurine and beta-alanine carriers in both cell types.
    Larsson OM; Griffiths R; Allen IC; Schousboe A
    J Neurochem; 1986 Aug; 47(2):426-32. PubMed ID: 3090200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of excitatory amino acids on gamma-aminobutyric acid release from frog horizontal cells.
    Cunningham JR; Neal MJ
    J Physiol; 1985 May; 362():51-67. PubMed ID: 3874955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histological structure of filum terminale in human fetuses.
    Kural C; Guresci S; Simsek GG; Arslan E; Tehli O; Solmaz I; Izci Y
    J Neurosurg Pediatr; 2014 Apr; 13(4):362-7. PubMed ID: 24506339
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ventral root responses of the hemisected amphibian spinal cord to perfused amino acids in the presence of procaine.
    Evans RH; Watkins JC
    Br J Pharmacol; 1975 Dec; 55(4):519-26. PubMed ID: 813800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of gamma-aminobutyric acid GAT-1 transporters on glutamatergic terminals of mouse spinal cord mediates glutamate release through anion channels and by transporter reversal.
    Raiteri L; Stigliani S; Patti L; Usai C; Bucci G; Diaspro A; Raiteri M; Bonanno G
    J Neurosci Res; 2005 May; 80(3):424-33. PubMed ID: 15789377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light microscopic and ultrastructural analysis of GABA-immunoreactive profiles in the monkey spinal cord.
    Carlton SM; Hayes ES
    J Comp Neurol; 1990 Oct; 300(2):162-82. PubMed ID: 2258461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preliminary electron microscopic observations on ependymal cells in the caudal segment of the filum terminale and the ampulla caudalis of Macaca fascicularis and Cercopithecus griseoviridis (primates, Cercopithecidae).
    Hofer HO; Meinel W; Erhardt H
    Gegenbaurs Morphol Jahrb; 1987; 133(6):869-87. PubMed ID: 3449414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The presynaptic effects of valproic acid in the isolated frog spinal cord.
    Hackman JC; Grayson V; Davidoff RA
    Brain Res; 1981 Sep; 220(2):269-85. PubMed ID: 6116514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uptake and release of [3H]gamma-aminobutyric acid by embryonic spinal cord neurons in dissociated cell culture.
    Farb DH; Berg DK; Fischbach GD
    J Cell Biol; 1979 Mar; 80(3):651-61. PubMed ID: 457763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunocytochemical localization of glycine in the lamprey spinal cord with reference to GABAergic and glutamatergic synapses: a light and electron microscopic study.
    Shupliakov O; Fagerstedt P; Ottersen OP; Storm-Mathiesen J; Grillner S; Brodin L
    Acta Biol Hung; 1996; 47(1-4):393-410. PubMed ID: 9124008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glutamic acid, GABA and their metabolising enzymes in the frog central nervous system.
    Yates RA; Taberner PV
    Brain Res; 1975 Feb; 84(3):399-407. PubMed ID: 1078986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.