These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 31383888)
1. Modular microfluidic systems cast from 3D-printed molds for imaging leukocyte adherence to differentially treated endothelial cultures. Hernández Vera R; O'Callaghan P; Fatsis-Kavalopoulos N; Kreuger J Sci Rep; 2019 Aug; 9(1):11321. PubMed ID: 31383888 [TBL] [Abstract][Full Text] [Related]
2. 3D printed Lego Nie J; Gao Q; Qiu JJ; Sun M; Liu A; Shao L; Fu JZ; Zhao P; He Y Biofabrication; 2018 Mar; 10(3):035001. PubMed ID: 29417931 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. van der Meer AD; Orlova VV; ten Dijke P; van den Berg A; Mummery CL Lab Chip; 2013 Sep; 13(18):3562-8. PubMed ID: 23702711 [TBL] [Abstract][Full Text] [Related]
4. Insert-based microfluidics for 3D cell culture with analysis. Chen C; Townsend AD; Hayter EA; Birk HM; Sell SA; Martin RS Anal Bioanal Chem; 2018 May; 410(12):3025-3035. PubMed ID: 29536154 [TBL] [Abstract][Full Text] [Related]
5. Native extracellular matrix-derived semipermeable, optically transparent, and inexpensive membrane inserts for microfluidic cell culture. Mondrinos MJ; Yi YS; Wu NK; Ding X; Huh D Lab Chip; 2017 Sep; 17(18):3146-3158. PubMed ID: 28809418 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic alignment of collagen fibers for in vitro cell culture. Lee P; Lin R; Moon J; Lee LP Biomed Microdevices; 2006 Mar; 8(1):35-41. PubMed ID: 16491329 [TBL] [Abstract][Full Text] [Related]
7. A Reversibly Sealed, Easy Access, Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces. Abhyankar VV; Wu M; Koh CY; Hatch AV PLoS One; 2016; 11(5):e0156341. PubMed ID: 27227828 [TBL] [Abstract][Full Text] [Related]
8. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data. Costa PF; Albers HJ; Linssen JEA; Middelkamp HHT; van der Hout L; Passier R; van den Berg A; Malda J; van der Meer AD Lab Chip; 2017 Aug; 17(16):2785-2792. PubMed ID: 28717801 [TBL] [Abstract][Full Text] [Related]
9. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips. Leclerc E; El Kirat K; Griscom L Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187 [TBL] [Abstract][Full Text] [Related]
10. Characterization of pulmonary cell growth parameters in a continuous perfusion microfluidic environment. Nalayanda DD; Puleo CM; Fulton WB; Wang TH; Abdullah F Exp Lung Res; 2007 Aug; 33(6):321-35. PubMed ID: 17694441 [TBL] [Abstract][Full Text] [Related]
11. 3D printed mold leachates in PDMS microfluidic devices. de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes. Leclerc E; Sakai Y; Fujii T Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878 [TBL] [Abstract][Full Text] [Related]
14. Design of a side-view particle imaging velocimetry flow system for cell-substrate adhesion studies. Leyton-Mange J; Yang S; Hoskins MH; Kunz RF; Zahn JD; Dong C J Biomech Eng; 2006 Apr; 128(2):271-8. PubMed ID: 16524340 [TBL] [Abstract][Full Text] [Related]
15. Polymer Coatings in 3D-Printed Fluidic Device Channels for Improved Cellular Adherence Prior to Electrical Lysis. Gross BC; Anderson KB; Meisel JE; McNitt MI; Spence DM Anal Chem; 2015 Jun; 87(12):6335-41. PubMed ID: 25973637 [TBL] [Abstract][Full Text] [Related]
16. Self-loading and cell culture in one layer microfluidic devices. Wang L; Ni XF; Luo CX; Zhang ZL; Pang DW; Chen Y Biomed Microdevices; 2009 Jun; 11(3):679-84. PubMed ID: 19130238 [TBL] [Abstract][Full Text] [Related]
17. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. Zhang R; Larsen NB Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271 [TBL] [Abstract][Full Text] [Related]
18. Cell culture chip using low-shear mass transport. Liu K; Pitchimani R; Dang D; Bayer K; Harrington T; Pappas D Langmuir; 2008 Jun; 24(11):5955-60. PubMed ID: 18471001 [TBL] [Abstract][Full Text] [Related]
19. An easy to assemble microfluidic perfusion device with a magnetic clamp. Tkachenko E; Gutierrez E; Ginsberg MH; Groisman A Lab Chip; 2009 Apr; 9(8):1085-95. PubMed ID: 19350090 [TBL] [Abstract][Full Text] [Related]
20. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion. Mehta V; Vilikkathala Sudhakaran S; Rath SN ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]