BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31383916)

  • 1. Iron-rich Smectite Formation in Subseafloor Basaltic Lava in Aged Oceanic Crust.
    Yamashita S; Mukai H; Tomioka N; Kagi H; Suzuki Y
    Sci Rep; 2019 Aug; 9(1):11306. PubMed ID: 31383916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Microbial Colonization in Saponite-Bearing Fractures in Aged Basaltic Crust: Implications for Subsurface Life on Mars.
    Sueoka Y; Yamashita S; Kouduka M; Suzuki Y
    Front Microbiol; 2019; 10():2793. PubMed ID: 31866969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep microbial proliferation at the basalt interface in 33.5-104 million-year-old oceanic crust.
    Suzuki Y; Yamashita S; Kouduka M; Ao Y; Mukai H; Mitsunobu S; Kagi H; D'Hondt S; Inagaki F; Morono Y; Hoshino T; Tomioka N; Ito M
    Commun Biol; 2020 Apr; 3(1):136. PubMed ID: 32242062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer.
    Dzaugis ME; Spivack AJ; Dunlea AG; Murray RW; D'Hondt S
    Front Microbiol; 2016; 7():76. PubMed ID: 26870029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geology and geochemistry of paleosols developed on the Hekpoort Basalt, Pretoria Group, South Africa.
    Rye R; Holland HD
    Am J Sci; 2000 Feb; 300(2):85-141. PubMed ID: 11543500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity and Metabolic Potentials of Subsurface Crustal Microorganisms from the Western Flank of the Mid-Atlantic Ridge.
    Zhang X; Feng X; Wang F
    Front Microbiol; 2016; 7():363. PubMed ID: 27047476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geomicrobiology of the ocean crust: a role for chemoautotrophic Fe-bacteria.
    Edwards KJ; Bach W; Rogers DR
    Biol Bull; 2003 Apr; 204(2):180-5. PubMed ID: 12700150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some Compositional and Kinetic Controls on the Bioenergetic Landscapes in Oceanic Basement.
    Bach W
    Front Microbiol; 2016; 7():107. PubMed ID: 26903986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of Geochemical Bio-Signatures in Mars-Like Basaltic Environments.
    Olsson-Francis K; Pearson VK; Steer ED; Schwenzer SP
    Front Microbiol; 2017; 8():1668. PubMed ID: 28943863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.
    Grosch EG; Hazen RM
    Astrobiology; 2015 Oct; 15(10):922-39. PubMed ID: 26430911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traces of Ancient Life in Oceanic Basalt Preserved as Iron-Mineralized Ultrastructures: Implications for Detecting Extraterrestrial Biosignatures.
    Qu Y; Yin Z; Kustatscher E; Nützel A; Peckmann J; Vajda V; Ivarsson M
    Astrobiology; 2023 Jul; 23(7):769-785. PubMed ID: 37222732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smectite formation in the presence of sulfuric acid: Implications for acidic smectite formation on early Mars.
    Peretyazhko TS; Niles PB; Sutter B; Morris RV; Agresti DG; Le L; Ming DW
    Geochim Cosmochim Acta; 2018 Jan; 220():248-260. PubMed ID: 32801388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colonization of subsurface microbial observatories deployed in young ocean crust.
    Orcutt BN; Bach W; Becker K; Fisher AT; Hentscher M; Toner BM; Wheat CG; Edwards KJ
    ISME J; 2011 Apr; 5(4):692-703. PubMed ID: 21107442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential for microbial oxidation of ferrous iron in basaltic glass.
    Xiong MY; Shelobolina ES; Roden EE
    Astrobiology; 2015 May; 15(5):331-40. PubMed ID: 25915449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor Igneous Crust.
    Ivarsson M; Bengtson S; Skogby H; Lazor P; Broman C; Belivanova V; Marone F
    PLoS One; 2015; 10(10):e0140106. PubMed ID: 26488482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen Stimulates the Growth of Subsurface Basalt-associated Microorganisms at the Western Flank of the Mid-Atlantic Ridge.
    Zhang X; Fang J; Bach W; Edwards KJ; Orcutt BN; Wang F
    Front Microbiol; 2016; 7():633. PubMed ID: 27199959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower oceanic crust formed by in situ melt crystallisation revealed by seismic layering.
    Guo P; Singh SC; Vaddineni VA; Grevemeyer I; Saygin E
    Nat Geosci; 2022 Jul; 15(7):591-596. PubMed ID: 35855838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deconstructing Earth's oldest ichnofossil record from the Pilbara Craton, West Australia: Implications for seeking life in the Archean subseafloor.
    McLoughlin N; Wacey D; Phunguphungu S; Saunders M; Grosch EG
    Geobiology; 2020 Sep; 18(5):525-543. PubMed ID: 32542902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial Abundance and Diversity in Subsurface Lower Oceanic Crust at Atlantis Bank, Southwest Indian Ridge.
    Wee SY; Edgcomb VP; Beaudoin D; Yvon-Lewis S; Sylvan JB
    Appl Environ Microbiol; 2021 Oct; 87(22):e0151921. PubMed ID: 34469194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model.
    Orcutt BN; Wheat CG; Rouxel O; Hulme S; Edwards KJ; Bach W
    Nat Commun; 2013; 4():2539. PubMed ID: 24071791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.