These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 31384831)
81. Assessment of Lipophilicity Descriptors of Selected NSAIDs Obtained at Different TLC Stationary Phases. Starek M; Plenis A; Zagrobelna M; Dąbrowska M Pharmaceutics; 2021 Mar; 13(4):. PubMed ID: 33805056 [TBL] [Abstract][Full Text] [Related]
82. Mechanism of separation on cholesterol-silica stationary phase for high-performance liquid chromatography as revealed by analysis of quantitative structure-retention relationships. Al-Haj MA; Haber P; Kaliszan R; Buszewski B; Jezierska M; Chilmonzyk Z J Pharm Biomed Anal; 1998 Dec; 18(4-5):721-8. PubMed ID: 9919974 [TBL] [Abstract][Full Text] [Related]
83. Determination of pKa by pH gradient reversed-phase HPLC. Wiczling P; Markuszewski MJ; Kaliszan R Anal Chem; 2004 Jun; 76(11):3069-77. PubMed ID: 15167784 [TBL] [Abstract][Full Text] [Related]
84. [Optimum separation conditions of catechin compounds by HCI program in reversed-phase high performance liquid chromatography]. Jin Y; Row KH Se Pu; 2006 Sep; 24(5):466-70. PubMed ID: 17165539 [TBL] [Abstract][Full Text] [Related]
85. Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure-retention relationships. Kaliszan R; van Straten MA; Markuszewski M; Cramers CA; Claessens HA J Chromatogr A; 1999 Sep; 855(2):455-86. PubMed ID: 10519086 [TBL] [Abstract][Full Text] [Related]
86. Inosine and 2'-deoxyinosine and their synthetic analogues: lipophilicity in the relation to their retention in reversed-phase liquid chromatography and the stability characteristics. Novotny L; Abdel-Hamid M; Hamza H J Pharm Biomed Anal; 2000 Dec; 24(1):125-32. PubMed ID: 11108546 [TBL] [Abstract][Full Text] [Related]
87. Lipophilicity of thiobarbiturates determined by TLC. Kepczyńska E; Obłoza E; Stasiewicz-Urban A; Bojarski J; Pyka A Acta Pol Pharm; 2007; 64(4):295-302. PubMed ID: 18536154 [TBL] [Abstract][Full Text] [Related]
88. Study of the Lipophilicity and ADMET Parameters of New Anticancer Diquinothiazines with Pharmacophore Substituents. Klimoszek D; Jeleń M; Dołowy M; Morak-Młodawska B Pharmaceuticals (Basel); 2024 Jun; 17(6):. PubMed ID: 38931392 [TBL] [Abstract][Full Text] [Related]
89. Application of Ionic Liquids for the Determination of Lipophilicity Parameters Using TLC Method, and QSRR Analysis for the Antipsychotic Drugs. Mieszkowski D; Koba M; Marszałł MP Med Chem; 2020; 16(7):848-859. PubMed ID: 31340740 [TBL] [Abstract][Full Text] [Related]
90. Chromatographic behaviour in reversed-phase high-performance liquid chromatography with micellar and submicellar mobile phases: effects of the organic modifier. Fischer J; Jandera P J Chromatogr B Biomed Appl; 1996 May; 681(1):3-19. PubMed ID: 8798907 [TBL] [Abstract][Full Text] [Related]
91. Lipophilicity of amine neurotransmitter precursors, metabolites and related drugs estimated on various TLC plates. Cobzac SC; Casoni D; Sârbu C J Chromatogr Sci; 2014 Oct; 52(9):1095-103. PubMed ID: 24162523 [TBL] [Abstract][Full Text] [Related]
92. Assessment of Lipophilicity Indices Derived from Retention Behavior of Antioxidant Compounds in RP-HPLC. Sima IA; Kot-Wasik A; Wasik A; Namieśnik J; Sârbu C Molecules; 2017 Mar; 22(4):. PubMed ID: 28353678 [TBL] [Abstract][Full Text] [Related]
93. Determination of n-octanol/water partition coefficients of weak ionizable solutes by RP-HPLC with neutral model compounds. Han SY; Qiao JQ; Zhang YY; Lian HZ; Ge X Talanta; 2012 Aug; 97():355-61. PubMed ID: 22841092 [TBL] [Abstract][Full Text] [Related]
94. Comparison between immobilized artificial membrane (IAM) HPLC data and lipophilicity in n-octanol for quinolone antibacterial agents. Barbato F; Cirocco V; Grumetto L; Immacolata La Rotonda M Eur J Pharm Sci; 2007 Aug; 31(5):288-97. PubMed ID: 17540545 [TBL] [Abstract][Full Text] [Related]
95. Lipophilicity indices derived from the liquid chromatographic behavior observed under bimodal retention conditions (reversed phase/hydrophilic interaction): application to a representative set of pyridinium oximes. Voicu V; Sârbu C; Tache F; Micăle F; Rădulescu ŞF; Sakurada K; Ohta H; Medvedovici A Talanta; 2014 May; 122():172-9. PubMed ID: 24720980 [TBL] [Abstract][Full Text] [Related]
96. Chromatographic and computational screening of anisotropic lipophilicity and pharmacokinetics of newly synthesized 1-aryl-3-ethyl-3-methylsuccinimides. Kovačević S; Banjac MK; Podunavac-Kuzmanović S; Milošević N; Ćurčić J; Vulić J; Šeregelj V; Banjac N; Ušćumlić G Comput Biol Chem; 2020 Feb; 84():107161. PubMed ID: 31787580 [TBL] [Abstract][Full Text] [Related]
97. Enantioselective HPLC Analysis to Assist the Chemical Exploration of Chiral Imidazolines. Cerra B; Macchiarulo A; Carotti A; Camaioni E; Varfaj I; Sardella R; Gioiello A Molecules; 2020 Feb; 25(3):. PubMed ID: 32024219 [TBL] [Abstract][Full Text] [Related]
98. The Application of CA and PCA to the Evaluation of Lipophilicity and Physicochemical Properties of Tetracyclic Diazaphenothiazine Derivatives. Nycz-Empel A; Bober K; Wyszomirski M; Kisiel E; Zięba A J Anal Methods Chem; 2019; 2019():8131235. PubMed ID: 31781473 [TBL] [Abstract][Full Text] [Related]
99. Determination of solute lipophilicity by reversed-phase high-performance liquid chromatography (RP-HPLC). Liu X; Chuman H J Med Invest; 2005 Nov; 52 Suppl():293-4. PubMed ID: 16366518 [TBL] [Abstract][Full Text] [Related]
100. Application of reversed-phase thin layer chromatography and QSRR modelling for prediction of protein binding of selected β-blockers. Ciura K; Kawczak P; Greber KE; Kapica H; Nowakowska J; Bączek T J Pharm Biomed Anal; 2019 Nov; 176():112767. PubMed ID: 31398505 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]