BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 31384871)

  • 1. Polyoxometalate-based high-spin cluster systems: a NMR relaxivity study up to 1.4 GHz/33 T.
    Ibrahim M; Krämer S; Schork N; Guthausen G
    Dalton Trans; 2019 Nov; 48(41):15597-15604. PubMed ID: 31384871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR Relaxivities of Paramagnetic Lanthanide-Containing Polyoxometalates.
    Venu AC; Nasser Din R; Rudszuck T; Picchetti P; Chakraborty P; Powell AK; Krämer S; Guthausen G; Ibrahim M
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance relaxivities: investigations of ultrahigh-spin lanthanide clusters from 10 MHz to 1.4 GHz.
    Machado JR; Baniodeh A; Powell AK; Luy B; Krämer S; Guthausen G
    Chemphyschem; 2014 Nov; 15(16):3608-13. PubMed ID: 25115895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR Relaxivities of Paramagnetic, Ultra-High Spin Heterometallic Clusters within Polyoxometalate Matrix as a Function of Solvent and Metal Ion.
    Schork N; Ibrahim M; Baksi A; Krämer S; Powell AK; Guthausen G
    Chemphyschem; 2022 Oct; 23(19):e202200215. PubMed ID: 35896954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation and application of ultra-high spin clusters as magnetic resonance relaxation agents.
    Guthausen G; Machado JR; Luy B; Baniodeh A; Powell AK; Krämer S; Ranzinger F; Herrling MP; Lackner S; Horn H
    Dalton Trans; 2015 Mar; 44(11):5032-40. PubMed ID: 25670214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dy-DTPA derivatives as relaxation agents for very high field MRI: the beneficial effect of slow water exchange on the transverse relaxivities.
    Vander Elst L; Roch A; Gillis P; Laurent S; Botteman F; Bulte JW; Muller RN
    Magn Reson Med; 2002 Jun; 47(6):1121-30. PubMed ID: 12111958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents.
    Tóth E; Bolskar RD; Borel A; González G; Helm L; Merbach AE; Sitharaman B; Wilson LJ
    J Am Chem Soc; 2005 Jan; 127(2):799-805. PubMed ID: 15643906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rare Earth Polyoxometalates.
    Boskovic C
    Acc Chem Res; 2017 Sep; 50(9):2205-2214. PubMed ID: 28872827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths.
    Rohrer M; Bauer H; Mintorovitch J; Requardt M; Weinmann HJ
    Invest Radiol; 2005 Nov; 40(11):715-24. PubMed ID: 16230904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NaDyF4 Nanoparticles as T2 Contrast Agents for Ultrahigh Field Magnetic Resonance Imaging.
    Das GK; Johnson NJ; Cramen J; Blasiak B; Latta P; Tomanek B; van Veggel FC
    J Phys Chem Lett; 2012 Feb; 3(4):524-9. PubMed ID: 26286058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR transversal relaxivity of aqueous suspensions of particles of Ln(3+)-based zeolite type materials.
    Pereira GA; Norek M; Peters JA; Ananias D; Rocha J; Geraldes CF
    Dalton Trans; 2008 May; (17):2241-7. PubMed ID: 18414747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Gd(III)-based magnetic resonance imaging contrast agents: static and transient zero-field splitting contributions to the electronic relaxation and their impact on relaxivity.
    Benmelouka M; Borel A; Moriggi L; Helm L; Merbach AE
    J Phys Chem B; 2007 Feb; 111(4):832-40. PubMed ID: 17249827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing Strategies in the Design of Responsive Contrast Agents for Magnetic Resonance Imaging: A Case Study with Copper and Zinc.
    Pierre VC; Harris SM; Pailloux SL
    Acc Chem Res; 2018 Feb; 51(2):342-351. PubMed ID: 29356506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action.
    Caravan P
    Acc Chem Res; 2009 Jul; 42(7):851-62. PubMed ID: 19222207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of iron oxides on proton relaxivity.
    Josephson L; Lewis J; Jacobs P; Hahn PF; Stark DD
    Magn Reson Imaging; 1988; 6(6):647-53. PubMed ID: 2850434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the relaxivity values of protein cage-templated nanoparticles using magnetic resonance imaging.
    Sana B; Lim S
    Methods Mol Biol; 2015; 1252():39-50. PubMed ID: 25358771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells.
    Setua S; Menon D; Asok A; Nair S; Koyakutty M
    Biomaterials; 2010 Feb; 31(4):714-29. PubMed ID: 19822364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gadolinium(III)-loaded nanoparticulate zeolites as potential high-field MRI contrast agents: relationship between structure and relaxivity.
    Csajbók E; Bányai I; Vander Elst L; Muller RN; Zhou W; Peters JA
    Chemistry; 2005 Aug; 11(16):4799-807. PubMed ID: 15929138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lanthanoid endohedral metallofullerenols for MRI contrast agents.
    Kato H; Kanazawa Y; Okumura M; Taninaka A; Yokawa T; Shinohara H
    J Am Chem Soc; 2003 Apr; 125(14):4391-7. PubMed ID: 12670265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotational dynamics account for pH-dependent relaxivities of PAMAM dendrimeric, Gd-based potential MRI contrast agents.
    Laus S; Sour A; Ruloff R; Tóth E; Merbach AE
    Chemistry; 2005 May; 11(10):3064-76. PubMed ID: 15776490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.