BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 31385029)

  • 1. Modulation of intracortical inhibition and excitation in agonist and antagonist muscles following acute strength training.
    Mason J; Howatson G; Frazer AK; Pearce AJ; Jaberzadeh S; Avela J; Kidgell DJ
    Eur J Appl Physiol; 2019 Oct; 119(10):2185-2199. PubMed ID: 31385029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptations in corticospinal excitability and inhibition are not spatially confined to the agonist muscle following strength training.
    Mason J; Frazer A; Horvath DM; Pearce AJ; Avela J; Howatson G; Kidgell D
    Eur J Appl Physiol; 2017 Jul; 117(7):1359-1371. PubMed ID: 28455814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training intensity-dependent increases in corticospinal but not intracortical excitability after acute strength training.
    Colomer-Poveda D; Hortobágyi T; Keller M; Romero-Arenas S; Márquez G
    Scand J Med Sci Sports; 2020 Apr; 30(4):652-661. PubMed ID: 31785009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking the corticospinal responses to strength training.
    Mason J; Frazer AK; Avela J; Pearce AJ; Howatson G; Kidgell DJ
    Eur J Appl Physiol; 2020 Apr; 120(4):783-798. PubMed ID: 32060740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeated cathodal transspinal pulse and direct current stimulation modulate cortical and corticospinal excitability differently in healthy humans.
    Murray LM; Knikou M
    Exp Brain Res; 2019 Jul; 237(7):1841-1852. PubMed ID: 31079235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task-dependent modulation of corticospinal excitability and inhibition following strength training.
    Siddique U; Rahman S; Frazer A; Leung M; Pearce AJ; Kidgell DJ
    J Electromyogr Kinesiol; 2020 Jun; 52():102411. PubMed ID: 32244044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory action of forearm flexor muscle afferents on corticospinal outputs to antagonist muscles in humans.
    Bertolasi L; Priori A; Tinazzi M; Bertasi V; Rothwell JC
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):947-56. PubMed ID: 9714872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the early corticospinal-motoneuronal responses to strength training: a systematic review and meta-analysis.
    Mason J; Frazer AK; Pearce AJ; Goodwill AM; Howatson G; Jaberzadeh S; Kidgell DJ
    Rev Neurosci; 2019 Jul; 30(5):463-476. PubMed ID: 30864400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training.
    Kidgell DJ; Frazer AK; Daly RM; Rantalainen T; Ruotsalainen I; Ahtiainen J; Avela J; Howatson G
    Neuroscience; 2015 Aug; 300():566-75. PubMed ID: 26037804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticospinal excitability related to reciprocal muscles during the motor preparation period: effect of movement repetition.
    Suzuki M; Suzuki T; Tanaka S; Sugawara K; Hamaguchi T
    Neuroreport; 2019 Aug; 30(12):856-862. PubMed ID: 31283715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of acute resistance training modality on corticospinal excitability, intra-cortical and neuromuscular responses.
    Latella C; Teo WP; Harris D; Major B; VanderWesthuizen D; Hendy AM
    Eur J Appl Physiol; 2017 Nov; 117(11):2211-2224. PubMed ID: 28879576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced intracortical inhibition and facilitation of corticospinal neurons in musicians.
    Nordstrom MA; Butler SL
    Exp Brain Res; 2002 Jun; 144(3):336-42. PubMed ID: 12021815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The minimal number of TMS trials required for the reliable assessment of corticospinal excitability, short interval intracortical inhibition, and intracortical facilitation.
    Biabani M; Farrell M; Zoghi M; Egan G; Jaberzadeh S
    Neurosci Lett; 2018 May; 674():94-100. PubMed ID: 29551425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticospinal facilitation following prolonged proprioceptive stimulation by means of passive wrist movement.
    Macé MJ; Levin O; Alaerts K; Rothwell JC; Swinnen SP
    J Clin Neurophysiol; 2008 Aug; 25(4):202-9. PubMed ID: 18677184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticospinal responses following strength training: a systematic review and meta-analysis.
    Kidgell DJ; Bonanno DR; Frazer AK; Howatson G; Pearce AJ
    Eur J Neurosci; 2017 Dec; 46(11):2648-2661. PubMed ID: 28921683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TMS coil orientation and muscle activation influence lower limb intracortical excitability.
    Hand BJ; Opie GM; Sidhu SK; Semmler JG
    Brain Res; 2020 Nov; 1746():147027. PubMed ID: 32717277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crossed corticospinal facilitation between arm and trunk muscles in humans.
    Chiou SY; Strutton PH; Perez MA
    J Neurophysiol; 2018 Nov; 120(5):2595-2602. PubMed ID: 29847230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An acute bout of exercise modulates both intracortical and interhemispheric excitability.
    Neva JL; Brown KE; Mang CS; Francisco BA; Boyd LA
    Eur J Neurosci; 2017 May; 45(10):1343-1355. PubMed ID: 28370664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans.
    Perez MA; Lungholt BK; Nyborg K; Nielsen JB
    Exp Brain Res; 2004 Nov; 159(2):197-205. PubMed ID: 15549279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in intracortical excitability induced by stimulation of wrist afferents in man.
    Aimonetti JM; Nielsen JB
    J Physiol; 2001 Aug; 534(Pt 3):891-902. PubMed ID: 11483718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.