These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 31385106)
1. First molecular phylogenetic insights into the evolution of Eriocaulon (Eriocaulaceae, Poales). Larridon I; Tanaka N; Liang Y; Phillips SM; Barfod AS; Cho SH; Gale SW; Jobson RW; Kim YD; Li J; Muasya AM; Parnell JAN; Prajaksood A; Shutoh K; Souladeth P; Tagane S; Tanaka N; Yano O; Mesterházy A; Newman MF; Ito Y J Plant Res; 2019 Sep; 132(5):589-600. PubMed ID: 31385106 [TBL] [Abstract][Full Text] [Related]
2. Insights into the phylogeny and chloroplast genome evolution of Eriocaulon (Eriocaulaceae). Li E; Liu K; Deng R; Gao Y; Liu X; Dong W; Zhang Z BMC Plant Biol; 2023 Jan; 23(1):32. PubMed ID: 36639619 [TBL] [Abstract][Full Text] [Related]
3. Floral development and vasculature in Eriocaulon (Eriocaulaceae) provide insights into the evolution of Poales. de Lima Silva A; Trovó M; Stützel T; Rudall PJ; Sajo MDG; Coan AI Ann Bot; 2021 Sep; 128(5):605-626. PubMed ID: 34297090 [TBL] [Abstract][Full Text] [Related]
4. Understanding evolution in Poales: Insights from Eriocaulaceae plastome. Darshetkar AM; Datar MN; Tamhankar S; Li P; Choudhary RK PLoS One; 2019; 14(8):e0221423. PubMed ID: 31430346 [TBL] [Abstract][Full Text] [Related]
5. Stability Despite Reduction: Flower Structure, Patterns of Receptacle Elongation and Organ Fusion in Sokoloff DD; Yadav SR; Chandore AN; Remizowa MV Plants (Basel); 2020 Oct; 9(11):. PubMed ID: 33114293 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the complete chloroplast genome of a common Chinese medicinal herb, Shan M; Cao T; Xing W; Guo C Mitochondrial DNA B Resour; 2019 Oct; 4(2):3437-3438. PubMed ID: 33366028 [No Abstract] [Full Text] [Related]
7. Syngonanthus androgynus, a Striking New Species from South America, its Phylogenetic Placement and Implications for Evolution of Bisexuality in Eriocaulaceae. Watanabe MT; Hensold N; Sano PT PLoS One; 2015; 10(11):e0141187. PubMed ID: 26559183 [TBL] [Abstract][Full Text] [Related]
8. Molecular phylogenetics of the species-rich genus Habenaria (Orchidaceae) in the New World based on nuclear and plastid DNA sequences. Batista JA; Borges KS; de Faria MW; Proite K; Ramalho AJ; Salazar GA; van den Berg C Mol Phylogenet Evol; 2013 Apr; 67(1):95-109. PubMed ID: 23337176 [TBL] [Abstract][Full Text] [Related]
9. Phylogenetic analysis of Asian Symplocos (Symplocaceae) based on nuclear and chloroplast DNA sequences. Soejima A; Nagamasu H J Plant Res; 2004 Jun; 117(3):199-207. PubMed ID: 15103563 [TBL] [Abstract][Full Text] [Related]
10. Molecular phylogeny of Gymnocalycium (Cactaceae): assessment of alternative infrageneric systems, a new subgenus, and trends in the evolution of the genus. Demaio PH; Barfuss MH; Kiesling R; Till W; Chiapella JO Am J Bot; 2011 Nov; 98(11):1841-54. PubMed ID: 22012926 [TBL] [Abstract][Full Text] [Related]
11. Molecular systematics of Dendrobium (Orchidaceae, Dendrobieae) from mainland Asia based on plastid and nuclear sequences. Xiang XG; Schuiteman A; Li DZ; Huang WC; Chung SW; Li JW; Zhou HL; Jin WT; Lai YJ; Li ZY; Jin XH Mol Phylogenet Evol; 2013 Dec; 69(3):950-60. PubMed ID: 23811435 [TBL] [Abstract][Full Text] [Related]
12. Molecular phylogeny of the genus Fissidens (Fissidentaceae, Bryophyta) and a refinement of the infrageneric classification. Suzuki T; Inoue Y; Tsubota H Mol Phylogenet Evol; 2018 Oct; 127():190-202. PubMed ID: 29807154 [TBL] [Abstract][Full Text] [Related]
13. Molecular insights into the phylogeny and subgeneric classification of Frullania Raddi (Frullaniaceae, Porellales). Hentschel J; von Konrat MJ; Pócs T; Schäfer-Verwimp A; Jonathan Shaw A; Schneider H; Heinrichs J Mol Phylogenet Evol; 2009 Jul; 52(1):142-56. PubMed ID: 19166952 [TBL] [Abstract][Full Text] [Related]
14. Floral anatomy of Paepalanthoideae (Eriocaulaceae, Poales) and their Nectariferous structures. Rosa MM; Scatena VL Ann Bot; 2007 Jan; 99(1):131-9. PubMed ID: 17085472 [TBL] [Abstract][Full Text] [Related]
15. Acropetally developing vascular bundles coexisting with basipetally developing and basally blindly ended vascular bundles in scapes of Eriocaulon taquetii (Eriocaulaceae, monocotyledons). Endo Y; Sugawara F; Yashiro K J Plant Res; 2021 Jul; 134(4):765-778. PubMed ID: 33837510 [TBL] [Abstract][Full Text] [Related]
16. African Dacus (Diptera: Tephritidae: molecular data and host plant associations do not corroborate morphology based classifications. Virgilio M; De Meyer M; White IM; Backeljau T Mol Phylogenet Evol; 2009 Jun; 51(3):531-9. PubMed ID: 19444961 [TBL] [Abstract][Full Text] [Related]
17. Phylogeny of palaeotropic Derris-like taxa (Fabaceae) based on chloroplast and nuclear DNA sequences shows reorganization of (infra)generic classifications is needed. Sirichamorn Y; Adema FA; Gravendeel B; van Welzen PC Am J Bot; 2012 Nov; 99(11):1793-808. PubMed ID: 23144360 [TBL] [Abstract][Full Text] [Related]
18. Inflorescences in Eriocaulaceae: taxonomic relevance and practical implications. Stützel T; Trovó M Ann Bot; 2013 Nov; 112(8):1505-22. PubMed ID: 24158392 [TBL] [Abstract][Full Text] [Related]
19. Phylogenetic relationships of Aristida and relatives (Poaceae, Aristidoideae) based on noncoding chloroplast (trnL-F, rpl16) and nuclear (ITS) DNA sequences. Cerros-Tlatilpa R; Columbus JT; Barker NP Am J Bot; 2011 Nov; 98(11):1868-86. PubMed ID: 22052960 [TBL] [Abstract][Full Text] [Related]
20. Floral development and vascularization help to explain merism evolution in Silva AL; Trovó M; Coan AI PeerJ; 2016; 4():e2811. PubMed ID: 28028476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]