BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31385137)

  • 1. The Binding Mechanisms and Inhibitory Effect of Intravenous Anesthetics on AChE In Vitro and In Vivo: Kinetic Analysis and Molecular Docking.
    Işık M
    Neurochem Res; 2019 Sep; 44(9):2147-2155. PubMed ID: 31385137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cholinergic crisis on the potency of different emergency anaesthesia protocols in soman-poisoned rats.
    Marquart K; Herbert J; Amend N; Thiermann H; Worek F; Wille T
    Clin Toxicol (Phila); 2019 May; 57(5):343-349. PubMed ID: 30307341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inotropic effects of propofol, thiopental, midazolam, etomidate, and ketamine on isolated human atrial muscle.
    Gelissen HP; Epema AH; Henning RH; Krijnen HJ; Hennis PJ; den Hertog A
    Anesthesiology; 1996 Feb; 84(2):397-403. PubMed ID: 8602672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isobolographic analysis of propofol-thiopental hypnotic interaction in surgical patients.
    Vinik HR; Bradley EL; Kissin I
    Anesth Analg; 1999 Mar; 88(3):667-70. PubMed ID: 10072025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effects of intravenous anesthetics on mast cell function.
    Fujimoto T; Nishiyama T; Hanaoka K
    Anesth Analg; 2005 Oct; 101(4):1054-1059. PubMed ID: 16192519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroprotection by propofol in acute mechanical injury: role of GABAergic inhibition.
    Hollrigel GS; Toth K; Soltesz I
    J Neurophysiol; 1996 Oct; 76(4):2412-22. PubMed ID: 8899614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of intravenous anesthetics on bacterial elimination in human blood in vitro.
    Heller A; Heller S; Blecken S; Urbaschek R; Koch T
    Acta Anaesthesiol Scand; 1998 May; 42(5):518-26. PubMed ID: 9605366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular-docking-guided design and synthesis of new IAA-tacrine hybrids as multifunctional AChE/BChE inhibitors.
    Cheng ZQ; Zhu KK; Zhang J; Song JL; Muehlmann LA; Jiang CS; Liu CL; Zhang H
    Bioorg Chem; 2019 Mar; 83():277-288. PubMed ID: 30391700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and cholinesterase inhibitory activity study of new piperidone grafted spiropyrrolidines.
    Basiri A; Abd Razik BM; Ezzat MO; Kia Y; Kumar RS; Almansour AI; Arumugam N; Murugaiyah V
    Bioorg Chem; 2017 Dec; 75():210-216. PubMed ID: 28987876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory activities of major anthraquinones and other constituents from Cassia obtusifolia against β-secretase and cholinesterases.
    Jung HA; Ali MY; Jung HJ; Jeong HO; Chung HY; Choi JS
    J Ethnopharmacol; 2016 Sep; 191():152-160. PubMed ID: 27321278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-dose flumazenil potentiates the hypnotic activity of propofol, but not that of thiopental, in ddY mice.
    Adachi YU; Watanabe K; Higuchi H; Satoh T
    Acta Anaesthesiol Scand; 2001 Aug; 45(7):848-52. PubMed ID: 11472286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Direct effect of anesthetic inducers on the electromyographic signals of the adductor pollicis].
    Ortiz-Gómez JR
    Rev Esp Anestesiol Reanim; 2000 Apr; 47(4):157-61. PubMed ID: 10846912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of medetomidine-midazolam, acepromazine-butorphanol, and midazolam-butorphanol on induction dose of thiopental and propofol and on cardiopulmonary changes in dogs.
    Kojima K; Nishimura R; Mutoh T; Hong SH; Mochizuki M; Sasaki N
    Am J Vet Res; 2002 Dec; 63(12):1671-9. PubMed ID: 12492281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of Potent Dual Binding Site Acetylcholinesterase Inhibitors via Homo- and Heterodimerization of Coumarin-Based Moieties.
    Pisani L; Catto M; De Palma A; Farina R; Cellamare S; Altomare CD
    ChemMedChem; 2017 Aug; 12(16):1349-1358. PubMed ID: 28570763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro Effects of 2-{4-[Methylthio(methylsulfonyl)]phenyl}-3-substitutedthiazolidin-4-ones on the Acetylcholinesterase Activity in Rat Brain and Lymphocytes: Isoform Selectivity, Kinetic Analysis, and Molecular Docking.
    da Silva DS; Soares MSP; Martini F; Pesarico AP; de Mattos BDS; de Souza AA; da Silva CEH; Scaini JLR; Machado KDS; Wayne Nogueira C; Spanevello RM; Cunico W
    Neurochem Res; 2020 Feb; 45(2):241-253. PubMed ID: 31845170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of thiopental, ketamine, etomidate, propofol and midazolam on the production of adrenomedullin and endothelin-1 in vascular smooth muscle cells.
    Hayashi Y; Minamino N; Isumi Y; Kangawa K; Kuro M; Matsuo H
    Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):325-31. PubMed ID: 10509742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational and Kinetic Studies of Acetylcholine Esterase Inhibition by Phenserine.
    Tabrez S; Damanhouri GA
    Curr Pharm Des; 2019; 25(18):2108-2112. PubMed ID: 31258059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Salvia miltiorrhiza on acetylcholinesterase: Enzyme kinetics and interaction mechanism merging with molecular docking analysis.
    Tang H; Song P; Li J; Zhao D
    Int J Biol Macromol; 2019 Aug; 135():303-313. PubMed ID: 31128195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of etomidate, ketamine, midazolam, propofol, and thiopental on function and metabolism of isolated hearts.
    Stowe DF; Bosnjak ZJ; Kampine JP
    Anesth Analg; 1992 Apr; 74(4):547-58. PubMed ID: 1554122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining in silico and in vitro approaches to evaluate the acetylcholinesterase inhibitory profile of some commercially available flavonoids in the management of Alzheimer's disease.
    Kuppusamy A; Arumugam M; George S
    Int J Biol Macromol; 2017 Feb; 95():199-203. PubMed ID: 27871793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.