These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31385274)

  • 1. Isolation and Propagation of Single Inclusion-Derived Chlamydia Using Laser Microdissection.
    Podgorny OV; Polina NF; Lazarev VN
    Methods Mol Biol; 2019; 2042():137-150. PubMed ID: 31385274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of single Chlamydia-infected cells using laser microdissection.
    Podgorny OV; Polina NF; Babenko VV; Karpova IY; Kostryukova ES; Govorun VM; Lazarev VN
    J Microbiol Methods; 2015 Feb; 109():123-8. PubMed ID: 25546842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clonal isolation of chlamydia-infected cells using flow cytometry.
    Alzhanov DT; Suchland RJ; Bakke AC; Stamm WE; Rockey DD
    J Microbiol Methods; 2007 Jan; 68(1):201-8. PubMed ID: 16997404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent labeling reliably identifies Chlamydia trachomatis in living human endometrial cells and rapidly and accurately quantifies chlamydial inclusion forming units.
    Vicetti Miguel RD; Henschel KJ; Dueñas Lopez FC; Quispe Calla NE; Cherpes TL
    J Microbiol Methods; 2015 Dec; 119():79-82. PubMed ID: 26453947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane.
    Suchland RJ; Rockey DD; Bannantine JP; Stamm WE
    Infect Immun; 2000 Jan; 68(1):360-7. PubMed ID: 10603409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early detection of Chlamydia trachomatis using fluorescent, DNA binding dyes.
    Salari SH; Ward ME
    J Clin Pathol; 1979 Nov; 32(11):1155-62. PubMed ID: 92480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.
    Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA
    EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro growth of Chlamydia trachomatis in conjunctival and corneal epithelium.
    Patton DL; Chan KY; Kuo CC; Cosgrove YT; Langley L
    Invest Ophthalmol Vis Sci; 1988 Jul; 29(7):1087-95. PubMed ID: 2843480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions.
    Matsumoto A; Bessho H; Uehira K; Suda T
    J Electron Microsc (Tokyo); 1991 Oct; 40(5):356-63. PubMed ID: 1666645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development.
    Hall JV; Sun J; Slade J; Kintner J; Bambino M; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():158. PubMed ID: 25414835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximity Labeling of the Chlamydia trachomatis Inclusion Membrane.
    Olson MG; Jorgenson LM; Widner RE; Rucks EA
    Methods Mol Biol; 2019; 2042():245-278. PubMed ID: 31385281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Growth of
    Nogueira AT; Braun KM; Carabeo RA
    Front Cell Infect Microbiol; 2017; 7():438. PubMed ID: 29067282
    [No Abstract]   [Full Text] [Related]  

  • 13. Sphingolipid trafficking and purification in Chlamydia trachomatis-infected cells.
    Moore ER
    Curr Protoc Microbiol; 2012 Nov; Chapter 11():Unit 11A.2.. PubMed ID: 23184593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins.
    Taraska T; Ward DM; Ajioka RS; Wyrick PB; Davis-Kaplan SR; Davis CH; Kaplan J
    Infect Immun; 1996 Sep; 64(9):3713-27. PubMed ID: 8751921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport.
    Dille S; Kleinschnitz EM; Kontchou CW; Nölke T; Häcker G
    Infect Immun; 2015 Aug; 83(8):3268-80. PubMed ID: 26056386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydia trachomatis in routine cervical smears. A microscopic and ultrastructural analysis.
    Henry MR; de Mesy Jensen KL; Skoglund CD; Armstrong DW
    Acta Cytol; 1993; 37(3):343-52. PubMed ID: 8388608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enumeration of Viable Chlamydia from Infected Animals Using Immunofluorescent Microscopy.
    Liang S; Mahony JB
    Methods Mol Biol; 2019; 2042():237-244. PubMed ID: 31385280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimised sample DNA preparation for detection of Chlamydia trachomatis in synovial tissue by polymerase chain reaction and ligase chain reaction.
    Freise J; Gérard HC; Bunke T; Whittum-Hudson JA; Zeidler H; Köhler L; Hudson AP; Kuipers JG
    Ann Rheum Dis; 2001 Feb; 60(2):140-5. PubMed ID: 11156547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Giemsa and fluorescent monoclonal antibody staining of inoculated cell cultures for diagnosis of Chlamydia trachomatis.
    Chan SW; Cunningham AL
    Pathology; 1994 Apr; 26(2):194-7. PubMed ID: 8090593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlamydia trachomatis in chronic abacterial prostatitis: demonstration by colorimetric in situ hybridization.
    Abdelatif OM; Chandler FW; McGuire BS
    Hum Pathol; 1991 Jan; 22(1):41-4. PubMed ID: 1985076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.