BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 31385281)

  • 1. Proximity Labeling of the Chlamydia trachomatis Inclusion Membrane.
    Olson MG; Jorgenson LM; Widner RE; Rucks EA
    Methods Mol Biol; 2019; 2042():245-278. PubMed ID: 31385281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Proximity Labeling System to Map the
    Rucks EA; Olson MG; Jorgenson LM; Srinivasan RR; Ouellette SP
    Front Cell Infect Microbiol; 2017; 7():40. PubMed ID: 28261569
    [No Abstract]   [Full Text] [Related]  

  • 3. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximity Labeling To Map Host-Pathogen Interactions at the Membrane of a Bacterium-Containing Vacuole in Chlamydia trachomatis-Infected Human Cells.
    Olson MG; Widner RE; Jorgenson LM; Lawrence A; Lagundzin D; Woods NT; Ouellette SP; Rucks EA
    Infect Immun; 2019 Nov; 87(11):. PubMed ID: 31405957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximity-dependent proteomics of the Chlamydia trachomatis inclusion membrane reveals functional interactions with endoplasmic reticulum exit sites.
    Dickinson MS; Anderson LN; Webb-Robertson BM; Hansen JR; Smith RD; Wright AT; Hybiske K
    PLoS Pathog; 2019 Apr; 15(4):e1007698. PubMed ID: 30943267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Human Centrosomal Protein CCDC146 Binds
    Almeida F; Luís MP; Pereira IS; Pais SV; Mota LJ
    Front Cell Infect Microbiol; 2018; 8():254. PubMed ID: 30094225
    [No Abstract]   [Full Text] [Related]  

  • 7. Shifting proteomes: limitations in using the BioID proximity labeling system to study SNARE protein trafficking during infection with intracellular pathogens.
    Jorgenson LM; Olson-Wood MG; Rucks EA
    Pathog Dis; 2021 Aug; 79(7):. PubMed ID: 34323972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Coinfection Model to Evaluate Chlamydia Inc Protein Interactions.
    Ende R; Derré I
    Methods Mol Biol; 2019; 2042():205-218. PubMed ID: 31385278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins.
    Andersen SE; Bulman LM; Steiert B; Faris R; Weber MM
    Pathog Dis; 2021 Feb; 79(2):. PubMed ID: 33512479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins.
    Moore ER; Ouellette SP
    Front Cell Infect Microbiol; 2014; 4():157. PubMed ID: 25401095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane.
    Suchland RJ; Rockey DD; Bannantine JP; Stamm WE
    Infect Immun; 2000 Jan; 68(1):360-7. PubMed ID: 10603409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Co-infection Model System and the Use of Chimeric Proteins to Study
    Han Y; Derré I
    Front Cell Infect Microbiol; 2017; 7():79. PubMed ID: 28352612
    [No Abstract]   [Full Text] [Related]  

  • 13. Eukaryotic SNARE VAMP3 Dynamically Interacts with Multiple Chlamydial Inclusion Membrane Proteins.
    Bui DC; Jorgenson LM; Ouellette SP; Rucks EA
    Infect Immun; 2021 Jan; 89(2):. PubMed ID: 33229367
    [No Abstract]   [Full Text] [Related]  

  • 14. Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds.
    Kumar Y; Valdivia RH
    Cell Host Microbe; 2008 Aug; 4(2):159-69. PubMed ID: 18692775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlamydia trachomatis and its interaction with the cellular retromer.
    Banhart S; Rose L; Aeberhard L; Koch-Edelmann S; Heuer D
    Int J Med Microbiol; 2018 Jan; 308(1):197-205. PubMed ID: 29122514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2.
    Olson-Wood MG; Jorgenson LM; Ouellette SP; Rucks EA
    Infect Immun; 2021 Jun; 89(7):e0009421. PubMed ID: 33875478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safe haven under constant attack-The Chlamydia-containing vacuole.
    Fischer A; Rudel T
    Cell Microbiol; 2018 Oct; 20(10):e12940. PubMed ID: 30101516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orchestration of the mammalian host cell glucose transporter proteins-1 and 3 by Chlamydia contributes to intracellular growth and infectivity.
    Wang X; Hybiske K; Stephens RS
    Pathog Dis; 2017 Nov; 75(8):. PubMed ID: 29040458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydia trachomatis homotypic inclusion fusion is promoted by host microtubule trafficking.
    Richards TS; Knowlton AE; Grieshaber SS
    BMC Microbiol; 2013 Aug; 13():185. PubMed ID: 23919807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Septins arrange F-actin-containing fibers on the Chlamydia trachomatis inclusion and are required for normal release of the inclusion by extrusion.
    Volceanov L; Herbst K; Biniossek M; Schilling O; Haller D; Nölke T; Subbarayal P; Rudel T; Zieger B; Häcker G
    mBio; 2014 Oct; 5(5):e01802-14. PubMed ID: 25293760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.