BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31385646)

  • 1. Hidden Secrets Behind Dots: Improved Phytoplankton Taxonomic Resolution Using High-Throughput Imaging Flow Cytometry.
    Dunker S
    Cytometry A; 2019 Aug; 95(8):854-868. PubMed ID: 31385646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining high-throughput imaging flow cytometry and deep learning for efficient species and life-cycle stage identification of phytoplankton.
    Dunker S; Boho D; Wäldchen J; Mäder P
    BMC Ecol; 2018 Dec; 18(1):51. PubMed ID: 30509239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging Flow Cytometry for Phylogenetic and MorphologicallyBased Functional Group Clustering of a Natural Phytoplankton Community over 1 Year in an Urban Pond.
    Dunker S
    Cytometry A; 2020 Jul; 97(7):727-736. PubMed ID: 32472660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging flow cytometry for phytoplankton analysis.
    Dashkova V; Malashenkov D; Poulton N; Vorobjev I; Barteneva NS
    Methods; 2017 Jan; 112():188-200. PubMed ID: 27223402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weekly flow cytometric analysis of riverine phytoplankton to determine seasonal bloom dynamics.
    Read DS; Bowes MJ; Newbold LK; Whiteley AS
    Environ Sci Process Impacts; 2014 Mar; 16(3):594-603. PubMed ID: 24510006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FlowCam: Quantification and Classification of Phytoplankton by Imaging Flow Cytometry.
    Poulton NJ
    Methods Mol Biol; 2016; 1389():237-47. PubMed ID: 27460250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoplankton monitoring by high performance flow cytometry: a successful approach?
    Rutten TP; Sandee B; Hofman AR
    Cytometry A; 2005 Mar; 64(1):16-26. PubMed ID: 15688354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton.
    Lai QT; Lee KC; Tang AH; Wong KK; So HK; Tsia KK
    Opt Express; 2016 Dec; 24(25):28170-28184. PubMed ID: 27958529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automation of the in vitro micronucleus assay using the Imagestream
    Rodrigues MA
    Cytometry A; 2018 Jul; 93(7):706-726. PubMed ID: 30118149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach.
    Eiler A; Drakare S; Bertilsson S; Pernthaler J; Peura S; Rofner C; Simek K; Yang Y; Znachor P; Lindström ES
    PLoS One; 2013; 8(1):e53516. PubMed ID: 23349714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A light sheet based high throughput 3D-imaging flow cytometer for phytoplankton analysis.
    Wu J; Li J; Chan RK
    Opt Express; 2013 Jun; 21(12):14474-80. PubMed ID: 23787635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of a major phytoplankton bloom in the River Thames (UK) using flow cytometry and high performance liquid chromatography.
    Moorhouse HL; Read DS; McGowan S; Wagner M; Roberts C; Armstrong LK; Nicholls DJE; Wickham HD; Hutchins MG; Bowes MJ
    Sci Total Environ; 2018 May; 624():366-376. PubMed ID: 29258037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis and classification of phytoplankton based on data from an automated flow cytometer.
    Malkassian A; Nerini D; van Dijk MA; Thyssen M; Mante C; Gregori G
    Cytometry A; 2011 Apr; 79(4):263-75. PubMed ID: 21387542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of flow cytometry for examining phytoplankton succession in two eutrophic lakes.
    Dennis MA; Landman M; Wood SA; Hamilton D
    Water Sci Technol; 2011; 64(4):999-1008. PubMed ID: 22097090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging Technologies Build Capacity and Accessibility in Phytoplankton Species Identification Expertise for Research and Monitoring: Lessons Learned During the COVID-19 Pandemic.
    Clayton S; Gibala-Smith L; Mogatas K; Flores-Vargas C; Marciniak K; Wigginton M; Mulholland MR
    Front Microbiol; 2022; 13():823109. PubMed ID: 35495707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microflow Cytometer for optical analysis of phytoplankton.
    Hashemi N; Erickson JS; Golden JP; Jackson KM; Ligler FS
    Biosens Bioelectron; 2011 Jul; 26(11):4263-9. PubMed ID: 21601442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of Human White Blood Cells Using Machine Learning for Stain-Free Imaging Flow Cytometry.
    Lippeveld M; Knill C; Ladlow E; Fuller A; Michaelis LJ; Saeys Y; Filby A; Peralta D
    Cytometry A; 2020 Mar; 97(3):308-319. PubMed ID: 31688997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow cytometric discrimination of various phycobilin-containing phytoplankton groups in a hypertrophic reservoir.
    Becker A; Meister A; Wilhelm C
    Cytometry; 2002 May; 48(1):45-57. PubMed ID: 12116380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural network analysis of flow cytometric data for 40 marine phytoplankton species.
    Boddy L; Morris CW; Wilkins MF; Tarran GA; Burkill PH
    Cytometry; 1994 Apr; 15(4):283-93. PubMed ID: 8026219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Flow Cytometry-Based Assay for High-Throughput Detection and Quantification of Neutrophil Extracellular Traps in Mixed Cell Populations.
    Zharkova O; Tay SH; Lee HY; Shubhita T; Ong WY; Lateef A; MacAry PA; Lim LHK; Connolly JE; Fairhurst AM
    Cytometry A; 2019 Mar; 95(3):268-278. PubMed ID: 30549398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.