These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31386218)

  • 1. Dynamic prediction of Alzheimer's disease progression using features of multiple longitudinal outcomes and time-to-event data.
    Li K; Luo S
    Stat Med; 2019 Oct; 38(24):4804-4818. PubMed ID: 31386218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic predictions in Bayesian functional joint models for longitudinal and time-to-event data: An application to Alzheimer's disease.
    Li K; Luo S
    Stat Methods Med Res; 2019 Feb; 28(2):327-342. PubMed ID: 28750578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional survival forests for multivariate longitudinal outcomes: Dynamic prediction of Alzheimer's disease progression.
    Lin J; Li K; Luo S
    Stat Methods Med Res; 2021 Jan; 30(1):99-111. PubMed ID: 32726189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional joint model for longitudinal and time-to-event data: an application to Alzheimer's disease.
    Li K; Luo S
    Stat Med; 2017 Sep; 36(22):3560-3572. PubMed ID: 28664662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A prognostic model of Alzheimer's disease relying on multiple longitudinal measures and time-to-event data.
    Li K; O'Brien R; Lutz M; Luo S;
    Alzheimers Dement; 2018 May; 14(5):644-651. PubMed ID: 29306668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and prediction of clinical symptom trajectories in Alzheimer's disease using longitudinal data.
    Bhagwat N; Viviano JD; Voineskos AN; Chakravarty MM;
    PLoS Comput Biol; 2018 Sep; 14(9):e1006376. PubMed ID: 30216352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian inference and dynamic prediction of multivariate joint model with functional data: An application to Alzheimer's disease.
    Zou H; Li K; Zeng D; Luo S;
    Stat Med; 2021 Dec; 40(30):6855-6872. PubMed ID: 34649301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint model for survival and multivariate sparse functional data with application to a study of Alzheimer's Disease.
    Li C; Xiao L; Luo S
    Biometrics; 2022 Jun; 78(2):435-447. PubMed ID: 33501651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer's Disease.
    Platero C; Lin L; Tobar MC
    Neuroinformatics; 2019 Jan; 17(1):43-61. PubMed ID: 29785624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic prediction with time-dependent marker in survival analysis using supervised functional principal component analysis.
    Shi H; Jiang S; Cao J
    Stat Med; 2022 Aug; 41(18):3547-3560. PubMed ID: 35574725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longitudinal score prediction for Alzheimer's disease based on ensemble correntropy and spatial-temporal constraint.
    Lei B; Hou W; Zou W; Li X; Zhang C; Wang T
    Brain Imaging Behav; 2019 Feb; 13(1):126-137. PubMed ID: 29582337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker.
    Pickett KL; Suresh K; Campbell KR; Davis S; Juarez-Colunga E
    BMC Med Res Methodol; 2021 Oct; 21(1):216. PubMed ID: 34657597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the IWG-2 Diagnostic Criteria for Alzheimer's Disease to the ADNI.
    Wang HF; Tan L; Cao L; Zhu XC; Jiang T; Tan MS; Liu Y; Wang C; Tsai RM; Jia JP; Yu JT;
    J Alzheimers Dis; 2016; 51(1):227-36. PubMed ID: 26836176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian Functional Joint Models for Multivariate Longitudinal and Time-to-Event Data.
    Li K; Luo S
    Comput Stat Data Anal; 2019 Jan; 129():14-29. PubMed ID: 30559575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal clinical score prediction in Alzheimer's disease with soft-split sparse regression based random forest.
    Huang L; Jin Y; Gao Y; Thung KH; Shen D;
    Neurobiol Aging; 2016 Oct; 46():180-91. PubMed ID: 27500865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A six-month longitudinal evaluation significantly improves accuracy of predicting incipient Alzheimer's disease in mild cognitive impairment.
    Mubeen AM; Asaei A; Bachman AH; Sidtis JJ; Ardekani BA;
    J Neuroradiol; 2017 Oct; 44(6):381-387. PubMed ID: 28676345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Progression From Mild Cognitive Impairment to Alzheimer's Disease Using Autoregressive Modelling of Longitudinal and Multimodal Biomarkers.
    Minhas S; Khanum A; Riaz F; Khan SA; Alvi A
    IEEE J Biomed Health Inform; 2018 May; 22(3):818-825. PubMed ID: 28534796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential Clinical Value of Multiparametric PET in the Prediction of Alzheimer's Disease Progression.
    Chen X; Zhou Y; Wang R; Cao H; Reid S; Gao R; Han D;
    PLoS One; 2016; 11(5):e0154406. PubMed ID: 27183116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-to-event data with time-varying biomarkers measured only at study entry, with applications to Alzheimer's disease.
    Lee C; Betensky RA;
    Stat Med; 2018 Mar; 37(6):914-932. PubMed ID: 29266591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BAYESIAN INFERENCE AND DYNAMIC PREDICTION FOR MULTIVARIATE LONGITUDINAL AND SURVIVAL DATA.
    Zou H; Zeng D; Xiao L; Luo S
    Ann Appl Stat; 2023 Sep; 17(3):2574-2595. PubMed ID: 37719893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.