BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31386244)

  • 1. Anterior trunk muscle shows mix of axial and appendicular developmental patterns.
    Sagarin KA; Redgrave AC; Mosimann C; Burke AC; Devoto SH
    Dev Dyn; 2019 Oct; 248(10):961-968. PubMed ID: 31386244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early stages of chick somite development.
    Christ B; Ordahl CP
    Anat Embryol (Berl); 1995 May; 191(5):381-96. PubMed ID: 7625610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A crucial role for Pax3 in the development of the hypaxial musculature and the long-range migration of muscle precursors.
    Tremblay P; Dietrich S; Mericskay M; Schubert FR; Li Z; Paulin D
    Dev Biol; 1998 Nov; 203(1):49-61. PubMed ID: 9806772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle precursor cell movements in zebrafish are dynamic and require Six family genes.
    Talbot JC; Teets EM; Ratnayake D; Duy PQ; Currie PD; Amacher SL
    Development; 2019 May; 146(10):. PubMed ID: 31023879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Met and Hgf signaling controls hypaxial muscle and lateral line development in the zebrafish.
    Haines L; Neyt C; Gautier P; Keenan DG; Bryson-Richardson RJ; Hollway GE; Cole NJ; Currie PD
    Development; 2004 Oct; 131(19):4857-69. PubMed ID: 15342468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct modes of vertebrate hypaxial muscle formation contribute to the teleost body wall musculature.
    Windner SE; Steinbacher P; Obermayer A; Kasiba B; Zweimueller-Mayer J; Stoiber W
    Dev Genes Evol; 2011 Aug; 221(3):167-78. PubMed ID: 21720828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halves of epithelial somites and segmental plate show distinct muscle differentiation behavior in vitro compared to entire somites and segmental plate.
    Gamel AJ; Brand-Saberi B; Christ B
    Dev Biol; 1995 Dec; 172(2):625-39. PubMed ID: 8612977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vitro model of region-specific rib formation in chick axial skeleton: Intercellular interaction between somite and lateral plate cells.
    Matsutani K; Ikegami K; Aoyama H
    Mech Dev; 2019 Oct; 159():103568. PubMed ID: 31493459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis.
    Noden DM; Marcucio R; Borycki AG; Emerson CP
    Dev Dyn; 1999 Oct; 216(2):96-112. PubMed ID: 10536051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventral axial organs regulate expression of myotomal Fgf-8 that influences rib development.
    Huang R; Stolte D; Kurz H; Ehehalt F; Cann GM; Stockdale FE; Patel K; Christ B
    Dev Biol; 2003 Mar; 255(1):30-47. PubMed ID: 12618132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Early stages of myogenesis as seen through the action of the myf-5 gene].
    Buckingham M
    C R Seances Soc Biol Fil; 1997; 191(1):43-54. PubMed ID: 9181127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The zebrafish HGF receptor met controls migration of myogenic progenitor cells in appendicular development.
    Nord H; Dennhag N; Tydinger H; von Hofsten J
    PLoS One; 2019; 14(7):e0219259. PubMed ID: 31287821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative anatomy of zebrafish paired and median fin muscles: basis for functional, developmental, and macroevolutionary studies.
    Siomava N; Diogo R
    J Anat; 2018 Feb; 232(2):186-199. PubMed ID: 29148042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lateral plate mesoderm: a novel source of skeletal muscle.
    Pu Q; Patel K; Huang R
    Results Probl Cell Differ; 2015; 56():143-63. PubMed ID: 25344670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental mechanisms of migratory muscle precursors in medaka pectoral fin formation.
    Tani-Matsuhana S; Kusakabe R; Inoue K
    Dev Genes Evol; 2018 Sep; 228(5):189-196. PubMed ID: 30008036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of paraxis expression and somite formation by ectoderm- and neural tube-derived signals.
    Šošić D; Brand-Saberi B; Schmidt C; Christ B; Olson EN
    Dev Biol; 1997 May; 185(2):229-43. PubMed ID: 9187085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of lbx1 involved in the hypaxial musculature formation of the mouse embryo.
    Uchiyama K; Ishikawa A; Hanaoka K
    J Exp Zool; 2000 Feb; 286(3):270-9. PubMed ID: 10653966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of somites, muscle, and skeleton is independent of signals from the Wolffian duct.
    Krück S; Nesemann J; Scaal M
    Dev Dyn; 2013 Aug; 242(8):941-8. PubMed ID: 23681750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development.
    Nathan E; Monovich A; Tirosh-Finkel L; Harrelson Z; Rousso T; Rinon A; Harel I; Evans SM; Tzahor E
    Development; 2008 Feb; 135(4):647-57. PubMed ID: 18184728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos.
    Dali L; Gustin J; Perry K; Domingo CR
    Cells Tissues Organs; 2002; 172(1):1-12. PubMed ID: 12364823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.