These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31386748)

  • 1. Composition- and size-modulated porous bismuth-tin biphase alloys as anodes for advanced magnesium ion batteries.
    Niu J; Yin K; Gao H; Song M; Ma W; Peng Z; Zhang Z
    Nanoscale; 2019 Aug; 11(32):15279-15288. PubMed ID: 31386748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dealloying Synthetic Strategy for Nanoporous Bismuth-Antimony Anodes for Sodium Ion Batteries.
    Gao H; Niu J; Zhang C; Peng Z; Zhang Z
    ACS Nano; 2018 Apr; 12(4):3568-3577. PubMed ID: 29608846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile and Scalable Development of High-Performance Carbon-Free Tin-Based Anodes for Sodium-Ion Batteries.
    Gandharapu P; Das A; Tripathi R; Srihari V; Poswal HK; Mukhopadhyay A
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37504-37516. PubMed ID: 37506223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance.
    Shin HS; Jung KN; Jo YN; Park MS; Kim H; Lee JW
    Sci Rep; 2016 May; 6():26195. PubMed ID: 27189834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bismuth-Antimony Alloy Nanoparticle@Porous Carbon Nanosheet Composite Anode for High-Performance Potassium-Ion Batteries.
    Xiong P; Wu J; Zhou M; Xu Y
    ACS Nano; 2020 Jan; 14(1):1018-1026. PubMed ID: 31860268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase Separation Induced Binary Core-Shell Alloy Nanoparticles Embedded in Carbon Sheets for Magnesium Storage.
    Chen C; Huang H; Hu R; Bi R; Zhang L
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):39965-39975. PubMed ID: 36000722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Activation of 3D Porous Bi/Carbon Architectures: Toward High-Energy and Stable Nickel-Bismuth Batteries.
    Zeng Y; Lin Z; Wang Z; Wu M; Tong Y; Lu X
    Adv Mater; 2018 May; 30(18):e1707290. PubMed ID: 29575119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-tin alloys as anodes for rechargeable non-aqueous calcium-ion batteries at room temperature.
    Zhao-Karger Z; Xiu Y; Li Z; Reupert A; Smok T; Fichtner M
    Nat Commun; 2022 Jul; 13(1):3849. PubMed ID: 35788588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomistic Mechanisms of Mg Insertion Reactions in Group XIV Anodes for Mg-Ion Batteries.
    Wang M; Yuwono JA; Vasudevan V; Birbilis N; Medhekar NV
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):774-783. PubMed ID: 30525421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal Bismuth Nanocrystals as a Model Anode Material for Rechargeable Mg-Ion Batteries: Atomistic and Mesoscale Insights.
    Kravchyk KV; Piveteau L; Caputo R; He M; Stadie NP; Bodnarchuk MI; Lechner RT; Kovalenko MV
    ACS Nano; 2018 Aug; 12(8):8297-8307. PubMed ID: 30086624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in Bi-Based Anodes for Magnesium Ion Batteries.
    Song M; Gao H; Zhang Z
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low Interface Energies Tune the Electrochemical Reversibility of Tin Oxide Composite Nanoframes as Lithium-Ion Battery Anodes.
    Zhang L; Pu J; Jiang Y; Shen Z; Li J; Liu J; Ma H; Niu J; Zhang H
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36892-36901. PubMed ID: 30295450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Porous Tin Created by Tuning the Redox Potential Acts as an Advanced Electrode for Sodium-Ion Batteries.
    Wang L; Ni Y; Lei K; Dong H; Tian S; Li F
    ChemSusChem; 2018 Oct; 11(19):3376-3381. PubMed ID: 30107074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchrotron X-ray Spectroscopic Investigations of In-Situ-Formed Alloy Anodes for Magnesium Batteries.
    Xu X; Ye C; Chao D; Chen B; Li H; Tang C; Zhong X; Qiao SZ
    Adv Mater; 2022 Feb; 34(8):e2108688. PubMed ID: 34914149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bismuth Nanoparticle-Embedded Carbon Microrod for High-Rate Electrochemical Magnesium Storage.
    Zhang F; Shen Y; Xu H; Zhao X
    ACS Appl Mater Interfaces; 2023 May; 15(19):23353-23360. PubMed ID: 37140917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation, lithium storage properties, and mechanism of nanoporous germanium fabricated by dealloying.
    Wang S; Ma W; Yang W; Bai Q; Gao H; Peng Z; Zhang Z
    J Chem Phys; 2021 Nov; 155(18):184702. PubMed ID: 34773946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-activation for enhanced K-ion storage in battery anodes.
    Feng Y; Lv Y; Fu H; Parekh M; Rao AM; Wang H; Tai X; Yi X; Lin Y; Zhou J; Lu B
    Natl Sci Rev; 2023 Jul; 10(7):nwad118. PubMed ID: 37389185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic Substitution Enabled Synthesis of Vacancy-Rich Two-Dimensional Black TiO
    Wang Y; Xue X; Liu P; Wang C; Yi X; Hu Y; Ma L; Zhu G; Chen R; Chen T; Ma J; Liu J; Jin Z
    ACS Nano; 2018 Dec; 12(12):12492-12502. PubMed ID: 30474962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries.
    Wang H; Lu X; Li L; Li B; Cao D; Wu Q; Li Z; Yang G; Guo B; Niu C
    Nanoscale; 2016 Apr; 8(14):7595-603. PubMed ID: 26984273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling 100C Fast-Charging Bulk Bi Anodes for Na-Ion Batteries.
    Kim YH; An JH; Kim SY; Li X; Song EJ; Park JH; Chung KY; Choi YS; Scanlon DO; Ahn HJ; Lee JC
    Adv Mater; 2022 Jul; 34(27):e2201446. PubMed ID: 35524951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.