BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 31386919)

  • 1. Computing distance information from landmarks and self-motion cues - Differential contributions of anterior-lateral vs. posterior-medial entorhinal cortex in humans.
    Chen X; Vieweg P; Wolbers T
    Neuroimage; 2019 Nov; 202():116074. PubMed ID: 31386919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality.
    Kinkhabwala AA; Gu Y; Aronov D; Tank DW
    Elife; 2020 Mar; 9():. PubMed ID: 32149601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compromised Grid-Cell-like Representations in Old Age as a Key Mechanism to Explain Age-Related Navigational Deficits.
    Stangl M; Achtzehn J; Huber K; Dietrich C; Tempelmann C; Wolbers T
    Curr Biol; 2018 Apr; 28(7):1108-1115.e6. PubMed ID: 29551413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distance and Direction Codes Underlie Navigation of a Novel Semantic Space in the Human Brain.
    Viganò S; Piazza M
    J Neurosci; 2020 Mar; 40(13):2727-2736. PubMed ID: 32060171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation.
    Howard LR; Javadi AH; Yu Y; Mill RD; Morrison LC; Knight R; Loftus MM; Staskute L; Spiers HJ
    Curr Biol; 2014 Jun; 24(12):1331-1340. PubMed ID: 24909328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals.
    Mallory CS; Hardcastle K; Campbell MG; Attinger A; Low IIC; Raymond JL; Giocomo LM
    Nat Commun; 2021 Jan; 12(1):671. PubMed ID: 33510164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance-tuned neurons drive specialized path integration calculations in medial entorhinal cortex.
    Campbell MG; Attinger A; Ocko SA; Ganguli S; Giocomo LM
    Cell Rep; 2021 Sep; 36(10):109669. PubMed ID: 34496249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How cognitive aging affects multisensory integration of navigational cues.
    Bates SL; Wolbers T
    Neurobiol Aging; 2014 Dec; 35(12):2761-2769. PubMed ID: 24952995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic stress is associated with specific path integration deficits.
    Akan O; Bierbrauer A; Kunz L; Gajewski PD; Getzmann S; Hengstler JG; Wascher E; Axmacher N; Wolf OT
    Behav Brain Res; 2023 Mar; 442():114305. PubMed ID: 36682499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stellate Cells in the Medial Entorhinal Cortex Are Required for Spatial Learning.
    Tennant SA; Fischer L; Garden DLF; Gerlei KZ; Martinez-Gonzalez C; McClure C; Wood ER; Nolan MF
    Cell Rep; 2018 Jan; 22(5):1313-1324. PubMed ID: 29386117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From details to large scale: the representation of environmental positions follows a granularity gradient along the human hippocampal and entorhinal anterior-posterior axis.
    Evensmoen HR; Ladstein J; Hansen TI; Møller JA; Witter MP; Nadel L; Håberg AK
    Hippocampus; 2015 Jan; 25(1):119-35. PubMed ID: 25155295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular Network between Postrhinal Visual Cortex, Amygdala, and Entorhinal Cortex.
    Meier AM; Wang Q; Ji W; Ganachaud J; Burkhalter A
    J Neurosci; 2021 Jun; 41(22):4809-4825. PubMed ID: 33849948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal combination of environmental cues and path integration during navigation.
    Sjolund LA; Kelly JW; McNamara TP
    Mem Cognit; 2018 Jan; 46(1):89-99. PubMed ID: 28828745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hippocampus and retrosplenial cortex combine path integration signals for successful navigation.
    Sherrill KR; Erdem UM; Ross RS; Brown TI; Hasselmo ME; Stern CE
    J Neurosci; 2013 Dec; 33(49):19304-13. PubMed ID: 24305826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distal CA1 Maintains a More Coherent Spatial Representation than Proximal CA1 When Local and Global Cues Conflict.
    Deshmukh SS
    J Neurosci; 2021 Nov; 41(47):9767-9781. PubMed ID: 34670850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study.
    Wegman J; Tyborowska A; Janzen G
    Hippocampus; 2014 Jul; 24(7):853-68. PubMed ID: 24706395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-resolution study of hippocampal and medial temporal lobe correlates of spatial context and prospective overlapping route memory.
    Brown TI; Hasselmo ME; Stern CE
    Hippocampus; 2014 Jul; 24(7):819-39. PubMed ID: 24659134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional connectivity changes in the entorhinal cortex of taxi drivers.
    Peng L; Zeng LL; Liu Q; Wang L; Qin J; Xu H; Shen H; Li H; Hu D
    Brain Behav; 2018 Sep; 8(9):e01022. PubMed ID: 30112812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual Differences in Human Path Integration Abilities Correlate with Gray Matter Volume in Retrosplenial Cortex, Hippocampus, and Medial Prefrontal Cortex.
    Chrastil ER; Sherrill KR; Aselcioglu I; Hasselmo ME; Stern CE
    eNeuro; 2017; 4(2):. PubMed ID: 28451633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the dual entorhinal inputs to hippocampus: a hypothesis based on cue/action (non-self/self) couplets.
    Lisman JE
    Prog Brain Res; 2007; 163():615-25. PubMed ID: 17765741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.