These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31387075)

  • 1. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO
    Peng Y; Yang L; Ju X; Liao B; Ye K; Li L; Cao B; Ni Y
    J Hazard Mater; 2020 Jan; 381():120916. PubMed ID: 31387075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fire Tests on E-vehicle Battery Cells and Packs.
    Sturk D; Hoffmann L; Ahlberg Tidblad A
    Traffic Inj Prev; 2015; 16 Suppl 1():S159-64. PubMed ID: 25714114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxic fluoride gas emissions from lithium-ion battery fires.
    Larsson F; Andersson P; Blomqvist P; Mellander BE
    Sci Rep; 2017 Aug; 7(1):10018. PubMed ID: 28855553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New approaches to toxicity: a seven-gas predictive model and toxicant suppressants.
    Levin BC
    Drug Chem Toxicol; 1997 Nov; 20(4):271-80. PubMed ID: 9433656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni
    Li H; Duan Q; Zhao C; Huang Z; Wang Q
    J Hazard Mater; 2019 Aug; 375():241-254. PubMed ID: 31078060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fire risk of portable batteries in their end-of-life: Investigation of the state of charge of waste lithium-ion batteries in Austria.
    Nigl T; Bäck T; Stuhlpfarrer S; Pomberger R
    Waste Manag Res; 2021 Sep; 39(9):1193-1199. PubMed ID: 33843368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Gas Analysis and Fire Characterization of Lithium-Ion Cells During Thermal Runaway Using an Environmental Chamber.
    Kwon B; Cui W; Sharma A; Liao YT; Takahashi F; Juarez-Robles D; Parhizi M; Jeevarajan J
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 37067273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractional effective dose model for post-crash aircraft survivability.
    Speitel LC
    Toxicology; 1996 Dec; 115(1-3):167-77. PubMed ID: 9016751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory aspects of fire toxicology.
    Nelson GL
    Toxicology; 1987 Dec; 47(1-2):181-99. PubMed ID: 3686530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries.
    Diaz F; Wang Y; Weyhe R; Friedrich B
    Waste Manag; 2019 Feb; 84():102-111. PubMed ID: 30691881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries.
    Eshetu GG; Grugeon S; Laruelle S; Boyanov S; Lecocq A; Bertrand JP; Marlair G
    Phys Chem Chem Phys; 2013 Jun; 15(23):9145-55. PubMed ID: 23649367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of Dispersion and Explosion Characteristics of LiFePO
    Zhang M; Yang K; Zhang Q; Chen H; Fan M; Geng M; Wei B; Xie B
    ACS Omega; 2024 Apr; 9(15):17036-17044. PubMed ID: 38645366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk assessment in combustion toxicology: Should carbon dioxide be recognized as a modifier of toxicity or separate toxicological entity?
    Pauluhn J
    Toxicol Lett; 2016 Nov; 262():142-152. PubMed ID: 27664840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study on the thermal runaway inhibition of 18650 lithium-ion batteries by different fire extinguishing agents.
    Zhao J; Xue F; Fu Y; Cheng Y; Yang H; Lu S
    iScience; 2021 Aug; 24(8):102854. PubMed ID: 34381978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions.
    Ouyang D; Chen M; Liu J; Wei R; Weng J; Wang J
    RSC Adv; 2018 Sep; 8(58):33414-33424. PubMed ID: 35548129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation Study on Temperature Control Performance of Lithium-Ion Battery Fires by Fine Water Mist in Energy Storage Stations.
    Yao H; Lv K; Lou Z; Huang J; Zhang Y; Zhang Z; Wang M; Wei X
    ACS Omega; 2024 Jun; 9(25):27104-27112. PubMed ID: 38947830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods.
    Wang Z; Yang H; Li Y; Wang G; Wang J
    J Hazard Mater; 2019 Nov; 379():120730. PubMed ID: 31252342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development of a new small-scale smoke toxicity test method and its comparison with real-scale fire tests.
    Levin BC
    Toxicol Lett; 1992 Dec; 64-65 Spec No():257-64. PubMed ID: 1335176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Extinguishing Lithium Ion Batteries Based on Internally Embedded Fire-Extinguishing Microcapsules with Temperature-Responsiveness.
    Yim T; Park MS; Woo SG; Kwon HK; Yoo JK; Jung YS; Kim KJ; Yu JS; Kim YJ
    Nano Lett; 2015 Aug; 15(8):5059-67. PubMed ID: 26177284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative measurements by Fourier-transform infrared spectroscopy of toxic gas production during inhibition of JP-8 fires by CF(3)Br and C(3)F(7)H.
    Modiano SH; McNesby KL; Marsh PE; Bolt W; Herud C
    Appl Opt; 1996 Jul; 35(21):4004-8. PubMed ID: 21102803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.