These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31387075)

  • 21. The influence of zinc hydroxystannate on reducing toxic gases (CO, NO(x) and HCN) generation and fire hazards of thermoplastic polyurethane composites.
    Wang B; Sheng H; Shi Y; Song L; Zhang Y; Hu Y; Hu W
    J Hazard Mater; 2016 Aug; 314():260-269. PubMed ID: 27136731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of exposure to single or multiple combinations of the predominant toxic gases and low oxygen atmospheres produced in fires.
    Levin BC; Paabo M; Gurman JL; Harris SE
    Fundam Appl Toxicol; 1987 Aug; 9(2):236-50. PubMed ID: 2820822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superior "green" electrode materials for secondary batteries: through the footprint family indicators to analyze their environmental friendliness.
    Wu H; Gong Y; Yu Y; Huang K; Wang L
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36538-36557. PubMed ID: 31732947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of Flammability and Smoke Emission of Plastic Materials Used in Construction and Transport.
    Borucka M; Mizera K; Przybysz J; Kozikowski P; Gajek A
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A green and effective room-temperature recycling process of LiFePO
    Li L; Bian Y; Zhang X; Yao Y; Xue Q; Fan E; Wu F; Chen R
    Waste Manag; 2019 Feb; 85():437-444. PubMed ID: 30803599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-Risk Assessment of Mine Lithium Battery Fire Based on Quantitative Factor Characterization.
    Li K; Wang Y; Zhang Y; Wang S; Zou X
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental Study of Fire Hazards of Thermal-Insulation Material in Diesel Locomotive: Aluminum-Polyurethane.
    Zhang T; Zhou X; Yang L
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energetics of lithium ion battery failure.
    Lyon RE; Walters RN
    J Hazard Mater; 2016 Nov; 318():164-172. PubMed ID: 27420388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Data and video for the thermal and fire propagation of multiple lithium-ion batteries.
    Chen M; Ouyang D; Liu J; Wang J
    Data Brief; 2019 Oct; 26():104379. PubMed ID: 31528669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental data of lithium-ion battery and ultracapacitor under DST and UDDS profiles at room temperature.
    Wang Y; Liu C; Pan R; Chen Z
    Data Brief; 2017 Jun; 12():161-163. PubMed ID: 28459088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of Gas Formation and Consumption Driven by Crossover Effect in High-Voltage Lithium-Ion Batteries with Ni-Rich NMC Cathodes.
    Mao C; Ruther RE; Geng L; Li Z; Leonard DN; Meyer HM; Sacci RL; Wood DL
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43235-43243. PubMed ID: 31625714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules.
    Yang HY; Zhou XD; Yang LZ; Zhang TL
    Materials (Basel); 2015 Jul; 8(7):4210-4225. PubMed ID: 28793434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The combustion behavior of large scale lithium titanate battery.
    Huang P; Wang Q; Li K; Ping P; Sun J
    Sci Rep; 2015 Jan; 5():7788. PubMed ID: 25586064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling.
    Ojanen S; Lundström M; Santasalo-Aarnio A; Serna-Guerrero R
    Waste Manag; 2018 Jun; 76():242-249. PubMed ID: 29615279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and Quantification of Decomposition Mechanisms in Lithium-Ion Batteries; Input to Heat Flow Simulation for Modeling Thermal Runaway.
    Adanouj I; Kriston Á; Ruiz V; Pfrang A
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35311833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of Thermal and Structural Design in Lithium-Ion Batteries to Obtain Energy Efficient Battery Thermal Management System (BTMS): A Critical Review.
    Fayaz H; Afzal A; Samee ADM; Soudagar MEM; Akram N; Mujtaba MA; Jilte RD; Islam MT; Ağbulut Ü; Saleel CA
    Arch Comput Methods Eng; 2022; 29(1):129-194. PubMed ID: 33935484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Dependence of the Burning Process and Ignition Temperature of a Lithium Cell on Its State of Charge.
    Erd A; Ciszewski T
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lithium battery fires: implications for air medical transport.
    Thomas F; Mills G; Howe R; Zobell J
    Air Med J; 2012; 31(5):242-8. PubMed ID: 22938956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of Embedded Fiber-Optic Evanescent Wave Sensors for Optical Characterization of Graphite Anodes in Lithium-Ion Batteries.
    Ghannoum A; Nieva P; Yu A; Khajepour A
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41284-41290. PubMed ID: 29110453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The evolution of toxic effluents in fires and the assessment of toxic hazard.
    Purser DA
    Toxicol Lett; 1992 Dec; 64-65 Spec No():247-55. PubMed ID: 1335175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.