These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31387078)

  • 1. Stimulated luminescence emission: From phenomenological models to master analytical equations.
    Kitis G; Polymeris GS; Pagonis V
    Appl Radiat Isot; 2019 Nov; 153():108797. PubMed ID: 31387078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulated luminescence; Analysis of complex signals and fitting of dose response curves using analytical expressions based on the Lambert W function implemented in a commercial spreadsheet.
    Konstantinidis P; Kioumourtzoglou S; Polymeris GS; Kitis G
    Appl Radiat Isot; 2021 Oct; 176():109870. PubMed ID: 34388604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Need for Deconvolution Analysis of Experimental and Simulated Thermoluminescence Glow Curves.
    Kitis G; Pagonis V
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program.
    Afouxenidis D; Polymeris GS; Tsirliganis NC; Kitis G
    Radiat Prot Dosimetry; 2012 May; 149(4):363-70. PubMed ID: 21765155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally stimulated luminescence glow curve structure of β-irradiated CaB4O7:Dy.
    Akın A; Ekdal E; Arslanlar YT; Ayvacıklı M; Karalı T; Can N
    Luminescence; 2015 Sep; 30(6):830-4. PubMed ID: 25428760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CONDUCTION BAND-VALENCE BAND THEORY OF TL AND OSL: EMPHASIS ON DELOCALIZED TRANSITIONS AND EXPLANATION ON SOME UNUSUAL EFFECTS.
    Chen R
    Radiat Prot Dosimetry; 2020 Dec; 192(2):178-195. PubMed ID: 33434924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optically stimulated luminescence in LiCaAlF6:Eu2+ phosphor.
    More YK; Wankhede SP; Moharil SV; Kumar M; Chougaonkar MP
    Luminescence; 2015 Sep; 30(6):878-82. PubMed ID: 25620581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of optically stimulated luminescence to the dosimetry of recent radiation events involving low total absorbed doses.
    Godfrey-Smith DI; Haskell EH
    Health Phys; 1993 Oct; 65(4):396-404. PubMed ID: 8376120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optically and thermally stimulated luminescence characteristics of LaAlO
    de León-Alfaro MA; Morales-Hernández A; Roman-Lopez J; Zarate-Medina J; Rivera-Montalvo T
    Appl Radiat Isot; 2018 Feb; 132():57-60. PubMed ID: 29156251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary thermoluminescence and optically stimulated luminescence investigation of commercial pharmaceutical preparations towards the drug sterilization dosimetry.
    Kazakis NA; Tsirliganis NC; Kitis G
    Appl Radiat Isot; 2014 Sep; 91():79-91. PubMed ID: 24922552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a simple thermoluminescence and optically stimulated luminescence reader for luminescence dosimetry research.
    Mittani JCR; Tudela DRG; Ramirez AM
    Rev Sci Instrum; 2019 May; 90(5):056105. PubMed ID: 31153270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoluminescence and optically stimulated luminescence properties of beta-irradiated TiO2:Yb nanoparticles.
    Pal M; Pal U; Chernov V; Meléndrez R; Barboza-Flores M
    J Nanosci Nanotechnol; 2009 Mar; 9(3):1851-7. PubMed ID: 19435049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Optically Stimulated Luminescence and Signal Fading Properties of Several Materials.
    West WG; Kearfott KJ; Seow CY
    Health Phys; 2017 Jun; 112(6):560-577. PubMed ID: 28441288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unlocking the effect of Li and Ce ions on the thermoluminescence and optically stimulated luminescence signals of the MgB
    Batista JVB; Trombini H; Otsuka A; Silveira IS; Caldas LVE; de Souza AO; Souza AS; Santos JLO; Coelho V; Lima H
    Dalton Trans; 2023 May; 52(19):6407-6419. PubMed ID: 37092281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and luminescence studies of Tb-doped MgO-MgAl
    Gugliotti C; Moriya K; Tatumi S; Mittani J
    Appl Radiat Isot; 2018 May; 135():219-223. PubMed ID: 29427958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MgO:Li,Ce,Sm as a high-sensitivity material for Optically Stimulated Luminescence dosimetry.
    Oliveira LC; Yukihara EG; Baffa O
    Sci Rep; 2016 Apr; 6():24348. PubMed ID: 27076349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermo- radio- and optically stimulated luminescence of Ce-doped KYF
    Marcazzó J; Camargo L; Martínez N; Caselli E; Acosta MA; López JG; Roldan AM; Khaidukov NM; Santiago M
    Appl Radiat Isot; 2019 Oct; 152():1-5. PubMed ID: 31203094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically and thermally stimulated luminescence characteristics of MgO:Tb3+.
    Bos AJ; Prokić M; Brouwer JC
    Radiat Prot Dosimetry; 2006; 119(1-4):130-3. PubMed ID: 16644952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the possibility of using commercial software packages for thermoluminescence glow curve deconvolution analysis.
    Pagonis V; Kitis G
    Radiat Prot Dosimetry; 2002; 101(1-4):93-8. PubMed ID: 12382713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoluminescence and optically stimulated luminescence properties of the 0.5P₂O₅-xBaO-(0.5-x)Li₂O glass systems.
    Timar-Gabor A; Ivascu C; Vasiliniuc S; Daraban L; Ardelean I; Cosma C; Cozar O
    Appl Radiat Isot; 2011 May; 69(5):780-4. PubMed ID: 21296582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.