These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 31387235)
1. Gelatin/Hyaluronic Acid Content in Hydrogels Obtained through Blue Light-Induced Gelation Affects Hydrogel Properties and Adipose Stem Cell Behaviors. Sakai S; Ohi H; Taya M Biomolecules; 2019 Aug; 9(8):. PubMed ID: 31387235 [TBL] [Abstract][Full Text] [Related]
2. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking. Sakai S; Ohi H; Hotta T; Kamei H; Taya M Biopolymers; 2018 Feb; 109(2):. PubMed ID: 29139103 [TBL] [Abstract][Full Text] [Related]
3. Production of a composite hyaluronic acid/gelatin blood plasma gel for hydrogel-based adipose tissue engineering applications. Korurer E; Kenar H; Doger E; Karaoz E J Biomed Mater Res A; 2014 Jul; 102(7):2220-9. PubMed ID: 23913820 [TBL] [Abstract][Full Text] [Related]
4. Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells. Gwon K; Kim E; Tae G Acta Biomater; 2017 Feb; 49():284-295. PubMed ID: 27919839 [TBL] [Abstract][Full Text] [Related]
5. Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid - Gelatin injectable hydrogels. Vaca-González JJ; Clara-Trujillo S; Guillot-Ferriols M; Ródenas-Rochina J; Sanchis MJ; Ribelles JLG; Garzón-Alvarado DA; Ferrer GG Bioelectrochemistry; 2020 Aug; 134():107536. PubMed ID: 32335352 [TBL] [Abstract][Full Text] [Related]
6. Visible light photo-crosslinking of biomimetic gelatin-hyaluronic acid hydrogels for adipose tissue engineering. Pitton M; Urzì C; Farè S; Contessi Negrini N J Mech Behav Biomed Mater; 2024 Oct; 158():106675. PubMed ID: 39068848 [TBL] [Abstract][Full Text] [Related]
7. Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Wenz A; Borchers K; Tovar GEM; Kluger PJ Biofabrication; 2017 Nov; 9(4):044103. PubMed ID: 28990579 [TBL] [Abstract][Full Text] [Related]
8. The effect of hyaluronic acid hydrogels on dental pulp stem cells behavior. Ahmadian E; Eftekhari A; Dizaj SM; Sharifi S; Mokhtarpour M; Nasibova AN; Khalilov R; Samiei M Int J Biol Macromol; 2019 Nov; 140():245-254. PubMed ID: 31419560 [TBL] [Abstract][Full Text] [Related]
9. Photo-crosslinked gelatin-hyaluronic acid methacrylate hydrogel-committed nucleus pulposus-like differentiation of adipose stromal cells for intervertebral disc repair. Chen P; Ning L; Qiu P; Mo J; Mei S; Xia C; Zhang J; Lin X; Fan S J Tissue Eng Regen Med; 2019 Apr; 13(4):682-693. PubMed ID: 30808066 [TBL] [Abstract][Full Text] [Related]
10. A composite Gelatin/hyaluronic acid hydrogel as an ECM mimic for developing mesenchymal stem cell-derived epithelial tissue patches. Kumar P; Ciftci S; Barthes J; Knopf-Marques H; Muller CB; Debry C; Vrana NE; Ghaemmaghami AM J Tissue Eng Regen Med; 2020 Jan; 14(1):45-57. PubMed ID: 31597222 [TBL] [Abstract][Full Text] [Related]
11. Gelatin-tyramine addition and low hydrogel density improves cell attachment, migration, and metabolic activity in vitro and tissue response in vivo in enzymatically crosslinkable dextran-hyaluronic acid hydrogels. Hendriks J; Zoetebier B; Larrea CS; Le NXT; Saris DBF; Karperien M Int J Biol Macromol; 2024 Feb; 259(Pt 2):128843. PubMed ID: 38104684 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of gelatin-hyaluronic acid composite hydrogels for accelerating wound healing. Wu S; Deng L; Hsia H; Xu K; He Y; Huang Q; Peng Y; Zhou Z; Peng C J Biomater Appl; 2017 May; 31(10):1380-1390. PubMed ID: 28376672 [TBL] [Abstract][Full Text] [Related]
13. Tuning the crosslinking and degradation of hyaluronic acid/gelatin hydrogels using hydrogen peroxide for muscle cell sheet fabrication. Elvitigala KCML; Mubarok W; Sakai S Soft Matter; 2023 Aug; 19(31):5880-5887. PubMed ID: 37439099 [TBL] [Abstract][Full Text] [Related]
14. Sequential gelation of tyramine-substituted hyaluronic acid hydrogels enhances mechanical integrity and cell viability. Abu-Hakmeh A; Kung A; Mintz BR; Kamal S; Cooper JA; Lu XL; Wan LQ Med Biol Eng Comput; 2016 Dec; 54(12):1893-1902. PubMed ID: 27056409 [TBL] [Abstract][Full Text] [Related]
17. Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Jha AK; Xu X; Duncan RL; Jia X Biomaterials; 2011 Apr; 32(10):2466-78. PubMed ID: 21216457 [TBL] [Abstract][Full Text] [Related]
18. Free radical-scavenging composite gelatin methacryloyl hydrogels for cell encapsulation. Lee GM; Kim SJ; Kim EM; Kim E; Lee S; Lee E; Park HH; Shin H Acta Biomater; 2022 Sep; 149():96-110. PubMed ID: 35779769 [TBL] [Abstract][Full Text] [Related]
19. Adjustable and ultrafast light-cured hyaluronic acid hydrogel: promoting biocompatibility and cell growth. Zhang Q; Wei X; Ji Y; Yin L; Dong Z; Chen F; Zhong M; Shen J; Liu Z; Chang L J Mater Chem B; 2020 Jul; 8(25):5441-5450. PubMed ID: 32555786 [TBL] [Abstract][Full Text] [Related]
20. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Shi W; Fang F; Kong Y; Greer SE; Kuss M; Liu B; Xue W; Jiang X; Lovell P; Mohs AM; Dudley AT; Li T; Duan B Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34905737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]