BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 31387284)

  • 1. Comparative Analysis of two Sugarcane Ancestors
    Xu F; He L; Gao S; Su Y; Li F; Xu L
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31387284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum.
    Zhang J; Sharma A; Yu Q; Wang J; Li L; Zhu L; Zhang X; Chen Y; Ming R
    BMC Genomics; 2016 Jun; 17():446. PubMed ID: 27287040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis of Homologous Sequences of
    Sharma A; Song J; Lin Q; Singh R; Ramos N; Wang K; Zhang J; Ming R; Yu Q
    Front Plant Sci; 2018; 9():1414. PubMed ID: 30319674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic comparison of eight new plastome sequences from
    Sun J; Dong X; Cao Q; Xu T; Zhu M; Sun J; Dong T; Ma D; Han Y; Li Z
    PeerJ; 2019; 7():e6563. PubMed ID: 30881765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic variability among the chloroplast genomes of sugarcane (Saccharum spp) and its wild progenitor species Saccharum spontaneum L.
    Zhu JR; Zhou H; Pan YB; Lu X
    Genet Mol Res; 2014 Jan; 13(2):3037-47. PubMed ID: 24615073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of sucrose phosphate synthase (SPS) gene family between Saccharum officinarum and Saccharum spontaneum.
    Ma P; Zhang X; Chen L; Zhao Q; Zhang Q; Hua X; Wang Z; Tang H; Yu Q; Zhang M; Ming R; Zhang J
    BMC Plant Biol; 2020 Sep; 20(1):422. PubMed ID: 32928111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haplotype analysis of sucrose synthase gene family in three Saccharum species.
    Zhang J; Arro J; Chen Y; Ming R
    BMC Genomics; 2013 May; 14():314. PubMed ID: 23663250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome dynamics provides insights into divergences of the photosynthesis pathway between Saccharum officinarum and Saccharum spontaneum.
    Jiang Q; Hua X; Shi H; Liu J; Yuan Y; Li Z; Li S; Zhou M; Yin C; Dou M; Qi N; Wang Y; Zhang M; Ming R; Tang H; Zhang J
    Plant J; 2023 Mar; 113(6):1278-1294. PubMed ID: 36648196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete chloroplast genomes of Zingiber montanum and Zingiber zerumbet: Genome structure, comparative and phylogenetic analyses.
    Li DM; Ye YJ; Xu YC; Liu JM; Zhu GF
    PLoS One; 2020; 15(7):e0236590. PubMed ID: 32735595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars.
    Huang Y; Chen H; Han J; Zhang Y; Ma S; Yu G; Wang Z; Wang K
    Chromosoma; 2020 Mar; 129(1):45-55. PubMed ID: 31848693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification and expression profiling of DREB genes in Saccharum spontaneum.
    Li Z; Wang G; Liu X; Wang Z; Zhang M; Zhang J
    BMC Genomics; 2021 Jun; 22(1):456. PubMed ID: 34139993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thirteen complete chloroplast genomes of the costaceae family: insights into genome structure, selective pressure and phylogenetic relationships.
    Li DM; Pan YG; Liu HL; Yu B; Huang D; Zhu GF
    BMC Genomics; 2024 Jan; 25(1):68. PubMed ID: 38233753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics revealed the gene evolution and functional divergence of magnesium transporter families in Saccharum.
    Wang Y; Hua X; Xu J; Chen Z; Fan T; Zeng Z; Wang H; Hour AL; Yu Q; Ming R; Zhang J
    BMC Genomics; 2019 Jan; 20(1):83. PubMed ID: 30678642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes.
    Asano T; Tsudzuki T; Takahashi S; Shimada H; Kadowaki K
    DNA Res; 2004 Apr; 11(2):93-9. PubMed ID: 15449542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the complete chloroplast genome sequences of six
    Li C; Liu Y; Lin F; Zheng Y; Huang P
    PeerJ; 2022; 10():e13570. PubMed ID: 35795179
    [No Abstract]   [Full Text] [Related]  

  • 16. Very close relationship of the chloroplast genomes among Saccharum species.
    Takahashi S; Furukawa T; Asano T; Terajima Y; Shimada H; Sugimoto A; Kadowaki K
    Theor Appl Genet; 2005 May; 110(8):1523-9. PubMed ID: 15818464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Three Sugarcane Homo/Homeologous Regions Suggests Independent Polyploidization Events of Saccharum officinarum and Saccharum spontaneum.
    Vilela MM; Del Bem LE; Van Sluys MA; de Setta N; Kitajima JP; Cruz GM; Sforça DA; de Souza AP; Ferreira PC; Grativol C; Cardoso-Silva CB; Vicentini R; Vincentz M
    Genome Biol Evol; 2017 Feb; 9(2):266-278. PubMed ID: 28082603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The complete chloroplast genome sequence of the medicinal plant Sophora tonkinensis.
    Wei F; Tang D; Wei K; Qin F; Li L; Lin Y; Zhu Y; Khan A; Kashif MH; Miao J
    Sci Rep; 2020 Jul; 10(1):12473. PubMed ID: 32719421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Complete Chloroplast Genome of a Key Ancestor of Modern Roses, Rosa chinensis var. spontanea, and a Comparison with Congeneric Species.
    Jian HY; Zhang YH; Yan HJ; Qiu XQ; Wang QG; Li SB; Zhang SD
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29439505
    [No Abstract]   [Full Text] [Related]  

  • 20. A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars.
    Wang K; Cheng H; Han J; Esh A; Liu J; Zhang Y; Wang B
    Chromosome Res; 2022 Mar; 30(1):29-41. PubMed ID: 34988746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.