These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31387293)

  • 1. Monte Carlo Simulations of Heat Deposition During Photothermal Skin Cancer Therapy Using Nanoparticles.
    Jeynes JCG; Wordingham F; Moran LJ; Curnow A; Harries TJ
    Biomolecules; 2019 Aug; 9(8):. PubMed ID: 31387293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing deep tissues with laser-induced thermotherapy using near-infrared light.
    Lopes A; Gomes R; Castiñeras M; Coelho JMP; Santos JP; Vieira P
    Lasers Med Sci; 2020 Feb; 35(1):43-49. PubMed ID: 31098938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of cancer photothermal therapy using near-infrared radiation and functionalized graphene nanosheets.
    Wang Y; Leng S; Huang J; Shu M; Papavassiliou DV
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3275. PubMed ID: 31680480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing tumor's skin photothermal therapy using Gold nanoparticles : a Monte Carlo simulation.
    Zerakni F; Dib ASA; Attili A
    Lasers Med Sci; 2024 May; 39(1):130. PubMed ID: 38750285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoscopic modeling of cancer photothermal therapy using single-walled carbon nanotubes and near infrared radiation: insights through an off-lattice Monte Carlo approach.
    Gong F; Hongyan Z; Papavassiliou DV; Bui K; Lim C; Duong HM
    Nanotechnology; 2014 May; 25(20):205101. PubMed ID: 24784034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small gold nanorods-loaded hybrid albumin nanoparticles with high photothermal efficacy for tumor ablation.
    Seo B; Lim K; Kim SS; Oh KT; Lee ES; Choi HG; Shin BS; Youn YS
    Colloids Surf B Biointerfaces; 2019 Jul; 179():340-351. PubMed ID: 30991214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of Apoptotic Temperature in Photothermal Therapy under Various Heating Conditions in Multi-Layered Skin Structure.
    Kim D; Kim H
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature.
    Zhu X; Feng W; Chang J; Tan YW; Li J; Chen M; Sun Y; Li F
    Nat Commun; 2016 Feb; 7():10437. PubMed ID: 26842674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a computational simulation tool to design a protocol for treating prostate tumours using transurethral laser photothermal therapy.
    Manuchehrabadi N; Zhu L
    Int J Hyperthermia; 2014 Sep; 30(6):349-61. PubMed ID: 25244058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling Spatial Heat and Light Distribution by Using Photothermal Enhancing Auto-Regulated Liposomes (PEARLs).
    Ng KK; Weersink RA; Lim L; Wilson BC; Zheng G
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):10003-7. PubMed ID: 27411830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotubes-Embedded Indocyanine Green-Hyaluronic Acid Nanoparticles for Photoacoustic-Imaging-Guided Phototherapy.
    Wang G; Zhang F; Tian R; Zhang L; Fu G; Yang L; Zhu L
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5608-17. PubMed ID: 26860184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging Local Heating and Thermal Diffusion of Nanomaterials with Plasmonic Thermal Microscopy.
    Chen Z; Shan X; Guan Y; Wang S; Zhu JJ; Tao N
    ACS Nano; 2015 Dec; 9(12):11574-81. PubMed ID: 26435320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study.
    Cho SH
    Phys Med Biol; 2005 Aug; 50(15):N163-73. PubMed ID: 16030374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy.
    Manuchehrabadi N; Chen Y; Lebrun A; Ma R; Zhu L
    J Biomech Eng; 2013 Dec; 135(12):121007. PubMed ID: 24026290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy.
    Paro AD; Hossain M; Webster TJ; Su M
    Int J Nanomedicine; 2016; 11():4735-4741. PubMed ID: 27695329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom.
    Didychuk CL; Ephrat P; Chamson-Reig A; Jacques SL; Carson JJ
    Nanotechnology; 2009 May; 20(19):195102. PubMed ID: 19420630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo method for photon heating using temperature-dependent optical properties.
    Slade AB; Aguilar G
    Comput Methods Programs Biomed; 2015 Feb; 118(2):234-41. PubMed ID: 25488656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle.
    Beik J; Asadi M; Khoei S; Laurent S; Abed Z; Mirrahimi M; Farashahi A; Hashemian R; Ghaznavi H; Shakeri-Zadeh A
    J Photochem Photobiol B; 2019 Oct; 199():111599. PubMed ID: 31470271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue.
    Taha E; Djouider F; Banoqitah E
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):363-370. PubMed ID: 29582243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations for optimal light delivery in photodynamic therapy of non-melanoma skin cancer.
    Valentine RM; Wood K; Brown CT; Ibbotson SH; Moseley H
    Phys Med Biol; 2012 Oct; 57(20):6327-45. PubMed ID: 22990348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.