These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31387314)

  • 1. On-Device Deep Learning Inference for Efficient Activity Data Collection.
    Mairittha N; Mairittha T; Inoue S
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31387314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-Device Deep Personalization for Robust Activity Data Collection.
    Mairittha N; Mairittha T; Inoue S
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition.
    Almaslukh B; Artoli AM; Al-Muhtadi J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and optimization of a TensorFlow Lite deep learning neural network for human activity recognition on a smartphone.
    Adi SE; Casson AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7028-7031. PubMed ID: 34892721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones.
    Ankita ; Rani S; Babbar H; Coleman S; Singh A; Aljahdali HM
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of deep learning for smartphone-based human activity recognition.
    Stampfler T; Elgendi M; Fletcher RR; Menon C
    Front Public Health; 2023; 11():1086671. PubMed ID: 36926170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Annotation for Human Activity Recognition in Free Living Using a Smartphone.
    Cruciani F; Cleland I; Nugent C; McCullagh P; Synnes K; Hallberg J
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29987218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognizing Human Daily Activity Using Social Media Sensors and Deep Learning.
    Gong J; Li R; Yao H; Kang X; Li S
    Int J Environ Res Public Health; 2019 Oct; 16(20):. PubMed ID: 31627356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Cost and Device-Free Human Activity Recognition Based on Hierarchical Learning Model.
    Chen J; Huang X; Jiang H; Miao X
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobile sensor based human activity recognition: distinguishing of challenging activities by applying long short-term memory deep learning modified by residual network concept.
    Shojaedini SV; Beirami MJ
    Biomed Eng Lett; 2020 Aug; 10(3):419-430. PubMed ID: 32864175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensor-Based Human Activity Recognition with Spatio-Temporal Deep Learning.
    Nafea O; Abdul W; Muhammad G; Alsulaiman M
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition.
    Avilés-Cruz C; Ferreyra-Ramírez A; Zúñiga-López A; Villegas-Cortéz J
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensor Data Acquisition and Multimodal Sensor Fusion for Human Activity Recognition Using Deep Learning.
    Chung S; Lim J; Noh KJ; Kim G; Jeong H
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone.
    Qi W; Su H; Yang C; Ferrigno G; De Momi E; Aliverti A
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring.
    Bhattacharya D; Sharma D; Kim W; Ijaz MF; Singh PK
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning for Activity Recognition in Older People Using a Pocket-Worn Smartphone.
    Nan Y; Lovell NH; Redmond SJ; Wang K; Delbaere K; van Schooten KS
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33334028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. INIM: Inertial Images Construction with Applications to Activity Recognition.
    Daniel N; Klein I
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.