BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 31387603)

  • 1. Long-chain vitamin K2 production in Lactococcus lactis is influenced by temperature, carbon source, aeration and mode of energy metabolism.
    Liu Y; van Bennekom EO; Zhang Y; Abee T; Smid EJ
    Microb Cell Fact; 2019 Aug; 18(1):129. PubMed ID: 31387603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering
    Bøe CA; Holo H
    Front Bioeng Biotechnol; 2020; 8():191. PubMed ID: 32258010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological Roles of Short-Chain and Long-Chain Menaquinones (Vitamin K2) in
    Liu Y; Charamis N; Boeren S; Blok J; Lewis AG; Smid EJ; Abee T
    Front Microbiol; 2022; 13():823623. PubMed ID: 35369466
    [No Abstract]   [Full Text] [Related]  

  • 4. Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative.
    Khelissa S; Chihib NE; Gharsallaoui A
    Arch Microbiol; 2021 Mar; 203(2):465-480. PubMed ID: 33001222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task Distribution between Acetate and Acetoin Pathways To Prolong Growth in Lactococcus lactis under Respiration Conditions.
    Cesselin B; Garrigues C; Pedersen MB; Roussel C; Gruss A; Gaudu P
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030222
    [No Abstract]   [Full Text] [Related]  

  • 6. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation.
    Cretenet M; Le Gall G; Wegmann U; Even S; Shearman C; Stentz R; Jeanson S
    BMC Genomics; 2014 Dec; 15(1):1054. PubMed ID: 25467604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactococcus lactis produces short-chain quinones that cross-feed Group B Streptococcus to activate respiration growth.
    Rezaïki L; Lamberet G; Derré A; Gruss A; Gaudu P
    Mol Microbiol; 2008 Mar; 67(5):947-57. PubMed ID: 18194159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.
    Larsen N; Werner BB; Vogensen FK; Jespersen L
    J Dairy Sci; 2015 Mar; 98(3):1640-51. PubMed ID: 25597975
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Liu Y; de Groot A; Boeren S; Abee T; Smid EJ
    Front Microbiol; 2021; 12():746770. PubMed ID: 34721346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions.
    Koebmann B; Blank LM; Solem C; Petranovic D; Nielsen LK; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):25-33. PubMed ID: 17824842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered superoxide dismutase activity by carbohydrate utilization in a Lactococcus lactis strain.
    Kimoto-Nira H; Moriya N; Ohmori H; Suzuki C
    J Food Prot; 2014 Jul; 77(7):1161-7. PubMed ID: 24988023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system.
    Vido K; Le Bars D; Mistou MY; Anglade P; Gruss A; Gaudu P
    J Bacteriol; 2004 Mar; 186(6):1648-57. PubMed ID: 14996795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aeration and fermentation strategies on nisin production.
    Jiang L; Liu Y; Yan G; Cui Y; Cheng Q; Zhang Z; Meng Q; Teng L; Ren X
    Biotechnol Lett; 2015 Oct; 37(10):2039-45. PubMed ID: 26087947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New aspects of microbial vitamin K2 production by expanding the product spectrum.
    Zhang Z; Liu L; Liu C; Sun Y; Zhang D
    Microb Cell Fact; 2021 Apr; 20(1):84. PubMed ID: 33849534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival.
    Duwat P; Sourice S; Cesselin B; Lamberet G; Vido K; Gaudu P; Le Loir Y; Violet F; Loubière P; Gruss A
    J Bacteriol; 2001 Aug; 183(15):4509-16. PubMed ID: 11443085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate.
    Jensen NB; Melchiorsen CR; Jokumsen KV; Villadsen J
    Appl Environ Microbiol; 2001 Jun; 67(6):2677-82. PubMed ID: 11375180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon.
    Pedersen MB; Garrigues C; Tuphile K; Brun C; Vido K; Bennedsen M; Møllgaard H; Gaudu P; Gruss A
    J Bacteriol; 2008 Jul; 190(14):4903-11. PubMed ID: 18487342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Lactococcus lactis capable of respiring in the presence of heme].
    Liang F; Fei L; Guicheng H
    Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1256-9. PubMed ID: 19062653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions.
    Papagianni M; Avramidis N
    Enzyme Microb Technol; 2012 Aug; 51(3):125-30. PubMed ID: 22759530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.