These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31387765)

  • 81. Effects of dehydration on phonation in excised canine larynges.
    Jiang J; Verdolini K; Aquino B; Ng J; Hanson D
    Ann Otol Rhinol Laryngol; 2000 Jun; 109(6):568-75. PubMed ID: 10855568
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Biomechanical modeling of the three-dimensional aspects of human vocal fold dynamics.
    Yang A; Lohscheller J; Berry DA; Becker S; Eysholdt U; Voigt D; Döllinger M
    J Acoust Soc Am; 2010 Feb; 127(2):1014-31. PubMed ID: 20136223
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Two-dimensional analysis of vocal fold vibration in unilaterally atrophied larynges.
    Kobayashi J; Yumoto E; Hyodo M; Gyo K
    Laryngoscope; 2000 Mar; 110(3 Pt 1):440-6. PubMed ID: 10718435
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Glottal configuration in unilaterally paralyzed larynx and vocal function.
    Yumoto E; Sanuki T; Minoda R; Kumai Y; Nishimoto K
    Acta Otolaryngol; 2013 Feb; 133(2):187-93. PubMed ID: 23145918
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 86. On the acoustic effects of the supraglottic structures in excised larynges.
    Alipour F; Finnegan E
    J Acoust Soc Am; 2013 May; 133(5):2984-92. PubMed ID: 23654402
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Influence of asymmetric recurrent laryngeal nerve stimulation on vibration, acoustics, and aerodynamics.
    Chhetri DK; Neubauer J; Sofer E
    Laryngoscope; 2014 Nov; 124(11):2544-50. PubMed ID: 24913182
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Measures of spectral slope using an excised larynx model.
    Alipour F; Scherer RC; Finnegan E
    J Voice; 2012 Jul; 26(4):403-11. PubMed ID: 22056893
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Measurement of vocal fold intraglottal pressure and impact stress.
    Jiang JJ; Titze IR
    J Voice; 1994 Jun; 8(2):132-44. PubMed ID: 8061769
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Nonlinear source-filter coupling in phonation: theory.
    Titze IR
    J Acoust Soc Am; 2008 May; 123(5):2733-49. PubMed ID: 18529191
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Quantitative Analysis of Vocal Fold Vibration in Vocal Fold Paralysis With the Use of High-speed Digital Imaging.
    Yamauchi A; Yokonishi H; Imagawa H; Sakakibara KI; Nito T; Tayama N
    J Voice; 2016 Nov; 30(6):766.e13-766.e22. PubMed ID: 26652777
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Evaluation of type II thyroplasty on phonatory physiology in an excised canine larynx model.
    Devine EE; Hoffman MR; McCulloch TM; Jiang JJ
    Laryngoscope; 2017 Feb; 127(2):396-404. PubMed ID: 27223665
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Modulating phonation through alteration of vocal fold medial surface contour.
    Mau T; Muhlestein J; Callahan S; Chan RW
    Laryngoscope; 2012 Sep; 122(9):2005-14. PubMed ID: 22865592
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Lubrication mechanism of the larynx during phonation: an experiment in excised canine larynges.
    Nakagawa H; Fukuda H; Kawaida M; Shiotani A; Kanzaki J
    Folia Phoniatr Logop; 1998; 50(4):183-94. PubMed ID: 9819480
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees.
    Shinwari D; Scherer RC; DeWitt KJ; Afjeh AA
    J Acoust Soc Am; 2003 Jan; 113(1):487-97. PubMed ID: 12558286
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Comparison of one-dimensional and three-dimensional glottal flow models in left-right asymmetric vocal fold conditions.
    Yoshinaga T; Zhang Z; Iida A
    J Acoust Soc Am; 2022 Nov; 152(5):2557. PubMed ID: 36456298
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Strobophotoglottographic transillumination as a method for the analysis of vocal fold vibration patterns.
    Hess MM; Ludwigs M
    J Voice; 2000 Jun; 14(2):255-71. PubMed ID: 10875578
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Description of the Features and Vibratory Behaviors of the Nyquist Plot Analyzed From Laryngeal High-Speed Videoendoscopy Images.
    Mohd Khairuddin KA; Ahmad K; Mohd Ibrahim H; Yan Y
    J Voice; 2022 Jul; 36(4):582.e11-582.e22. PubMed ID: 32861565
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Resonance tube phonation in water: High-speed imaging, electroglottographic and oral pressure observations of vocal fold vibrations--a pilot study.
    Granqvist S; Simberg S; Hertegård S; Holmqvist S; Larsson H; Lindestad PÅ; Södersten M; Hammarberg B
    Logoped Phoniatr Vocol; 2015 Oct; 40(3):113-21. PubMed ID: 24865620
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Vocal power and pressure-flow relationships in excised tiger larynges.
    Titze IR; Fitch WT; Hunter EJ; Alipour F; Montequin D; Armstrong DL; McGee J; Walsh EJ
    J Exp Biol; 2010 Nov; 213(Pt 22):3866-73. PubMed ID: 21037066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.