These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 31387874)
1. Interaction of Cortical and Amygdalar Synaptic Input Modulates the Window of Opportunity for Information Processing in the Rhinal Cortices. Willems JGP; Wadman WJ; Cappaert NLM eNeuro; 2019; 6(4):. PubMed ID: 31387874 [TBL] [Abstract][Full Text] [Related]
2. Parvalbumin interneuron mediated feedforward inhibition controls signal output in the deep layers of the perirhinal-entorhinal cortex. Willems JGP; Wadman WJ; Cappaert NLM Hippocampus; 2018 Apr; 28(4):281-296. PubMed ID: 29341361 [TBL] [Abstract][Full Text] [Related]
4. Distinct Spatiotemporal Activation Patterns of the Perirhinal-Entorhinal Network in Response to Cortical and Amygdala Input. Willems JG; Wadman WJ; Cappaert NL Front Neural Circuits; 2016; 10():44. PubMed ID: 27378860 [TBL] [Abstract][Full Text] [Related]
5. Excitatory Postrhinal Projections to Principal Cells in the Medial Entorhinal Cortex. Koganezawa N; Gisetstad R; Husby E; Doan TP; Witter MP J Neurosci; 2015 Dec; 35(48):15860-74. PubMed ID: 26631468 [TBL] [Abstract][Full Text] [Related]
6. Synaptic activation patterns of the perirhinal-entorhinal inter-connections. de Villers-Sidani E; Tahvildari B; Alonso A Neuroscience; 2004; 129(1):255-65. PubMed ID: 15489047 [TBL] [Abstract][Full Text] [Related]
7. Interaction between amygdala and neocortical inputs in the perirhinal cortex. Pelletier JG; Apergis-Schoute J; Paré D J Neurophysiol; 2005 Sep; 94(3):1837-48. PubMed ID: 16105956 [TBL] [Abstract][Full Text] [Related]
8. Perirhinal cortex represents nonspatial, but not spatial, information in rats foraging in the presence of objects: comparison with lateral entorhinal cortex. Deshmukh SS; Johnson JL; Knierim JJ Hippocampus; 2012 Oct; 22(10):2045-58. PubMed ID: 22987681 [TBL] [Abstract][Full Text] [Related]
9. Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal-hippocampal circuit. Kajiwara R; Takashima I; Mimura Y; Witter MP; Iijima T J Neurophysiol; 2003 Apr; 89(4):2176-84. PubMed ID: 12611981 [TBL] [Abstract][Full Text] [Related]
10. Propagation of neocortical inputs in the perirhinal cortex. Martina M; Royer S; Paré D J Neurosci; 2001 Apr; 21(8):2878-88. PubMed ID: 11306639 [TBL] [Abstract][Full Text] [Related]
11. Attenuated Activity across Multiple Cell Types and Reduced Monosynaptic Connectivity in the Aged Perirhinal Cortex. Maurer AP; Burke SN; Diba K; Barnes CA J Neurosci; 2017 Sep; 37(37):8965-8974. PubMed ID: 28821661 [TBL] [Abstract][Full Text] [Related]
12. Significance of the deep layers of entorhinal cortex for transfer of both perirhinal and amygdala inputs to the hippocampus. Koganezawa N; Taguchi A; Tominaga T; Ohara S; Tsutsui K; Witter MP; Iijima T Neurosci Res; 2008 Jun; 61(2):172-81. PubMed ID: 18407365 [TBL] [Abstract][Full Text] [Related]
13. Processing of Hippocampal Network Activity in the Receiver Network of the Medial Entorhinal Cortex Layer V. Rozov A; Rannap M; Lorenz F; Nasretdinov A; Draguhn A; Egorov AV J Neurosci; 2020 Oct; 40(44):8413-8425. PubMed ID: 32978288 [TBL] [Abstract][Full Text] [Related]
14. Lateral entorhinal, perirhinal, and amygdala-entorhinal transition projections to hippocampal CA1 and dentate gyrus in the rat: a current source density study. Canning KJ; Leung LS Hippocampus; 1997; 7(6):643-55. PubMed ID: 9443060 [TBL] [Abstract][Full Text] [Related]
15. Anterior Thalamic Excitation and Feedforward Inhibition of Presubicular Neurons Projecting to Medial Entorhinal Cortex. Nassar M; Simonnet J; Huang LW; Mathon B; Cohen I; Bendels MHK; Beraneck M; Miles R; Fricker D J Neurosci; 2018 Jul; 38(28):6411-6425. PubMed ID: 29921712 [TBL] [Abstract][Full Text] [Related]
16. Lateral entorhinal modulation of piriform cortical activity and fine odor discrimination. Chapuis J; Cohen Y; He X; Zhang Z; Jin S; Xu F; Wilson DA J Neurosci; 2013 Aug; 33(33):13449-59. PubMed ID: 23946403 [TBL] [Abstract][Full Text] [Related]
17. Propagation of synchronous burst discharges from entorhinal cortex to morphologically and electrophysiologically identified neurons of rat lateral amygdala. Funahashi M; Matsuo R; Stewart M Brain Res; 2000 Nov; 884(1--2):104-15. PubMed ID: 11082492 [TBL] [Abstract][Full Text] [Related]
18. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm. Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395 [TBL] [Abstract][Full Text] [Related]
19. Low-probability transmission of neocortical and entorhinal impulses through the perirhinal cortex. Pelletier JG; Apergis J; Paré D J Neurophysiol; 2004 May; 91(5):2079-89. PubMed ID: 15069098 [TBL] [Abstract][Full Text] [Related]
20. Superficial-layer versus deep-layer lateral entorhinal cortex: Coding of allocentric space, egocentric space, speed, boundaries, and corners. Wang C; Lee H; Rao G; Doreswamy Y; Savelli F; Knierim JJ Hippocampus; 2023 May; 33(5):448-464. PubMed ID: 36965194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]