BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31387937)

  • 1. IRF6 and TAK1 coordinately promote the activation of HIPK2 to stimulate apoptosis during palate fusion.
    Ke CY; Mei HH; Wong FH; Lo LJ
    Sci Signal; 2019 Aug; 12(593):. PubMed ID: 31387937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X; Han J; Ito Y; Bringas P; Urata MM; Chai Y
    Dev Biol; 2006 Sep; 297(1):238-48. PubMed ID: 16780827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice.
    Iwata J; Suzuki A; Pelikan RC; Ho TV; Sanchez-Lara PA; Urata M; Dixon MJ; Chai Y
    Development; 2013 Mar; 140(6):1220-30. PubMed ID: 23406900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TGFβ3 regulates periderm removal through ΔNp63 in the developing palate.
    Hu L; Liu J; Li Z; Ozturk F; Gurumurthy C; Romano RA; Sinha S; Nawshad A
    J Cell Physiol; 2015 Jun; 230(6):1212-25. PubMed ID: 25358290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IRF6 is the mediator of TGFβ3 during regulation of the epithelial mesenchymal transition and palatal fusion.
    Ke CY; Xiao WL; Chen CM; Lo LJ; Wong FH
    Sci Rep; 2015 Aug; 5():12791. PubMed ID: 26240017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathogenesis of cleft palate in TGF-beta3 knockout mice.
    Taya Y; O'Kane S; Ferguson MW
    Development; 1999 Sep; 126(17):3869-79. PubMed ID: 10433915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development.
    Lane J; Yumoto K; Azhar M; Ninomiya-Tsuji J; Inagaki M; Hu Y; Deng CX; Kim J; Mishina Y; Kaartinen V
    Dev Biol; 2015 Feb; 398(2):231-41. PubMed ID: 25523394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cleft palate candidate gene BAG6 supports FoxO1 acetylation to promote FasL-mediated apoptosis during palate fusion.
    Xu J; Liu F; Xiong Z; Huo J; Li W; Jiang B; Mao W; He B; Wang X; Li G
    Exp Cell Res; 2020 Nov; 396(2):112310. PubMed ID: 32991875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGF-beta3-dependent SMAD2 phosphorylation and inhibition of MEE proliferation during palatal fusion.
    Cui XM; Chai Y; Chen J; Yamamoto T; Ito Y; Bringas P; Shuler CF
    Dev Dyn; 2003 Jul; 227(3):387-94. PubMed ID: 12815624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive activation of hedgehog signaling adversely affects epithelial cell fate during palatal fusion.
    Li J; Yuan Y; He J; Feng J; Han X; Jing J; Ho TV; Xu J; Chai Y
    Dev Biol; 2018 Sep; 441(1):191-203. PubMed ID: 29981310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tgf-beta-mediated FasL-Fas-Caspase pathway is crucial during palatogenesis.
    Huang X; Yokota T; Iwata J; Chai Y
    J Dent Res; 2011 Aug; 90(8):981-7. PubMed ID: 21593251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotine inhibits palatal fusion and modulates nicotinic receptors and the PI-3 kinase pathway in medial edge epithelia.
    Kang P; Svoboda KK
    Orthod Craniofac Res; 2003 Aug; 6(3):129-42. PubMed ID: 12962196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SMAD2 overexpression rescues the TGF-β3 null mutant mice cleft palate by increased apoptosis.
    AlMegbel AM; Shuler CF
    Differentiation; 2020; 111():60-69. PubMed ID: 31677482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TGF-β-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells.
    Yumoto K; Thomas PS; Lane J; Matsuzaki K; Inagaki M; Ninomiya-Tsuji J; Scott GJ; Ray MK; Ishii M; Maxson R; Mishina Y; Kaartinen V
    J Biol Chem; 2013 May; 288(19):13467-80. PubMed ID: 23546880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tgf-beta3-induced palatal fusion is mediated by Alk-5/Smad pathway.
    Dudas M; Nagy A; Laping NJ; Moustakas A; Kaartinen V
    Dev Biol; 2004 Feb; 266(1):96-108. PubMed ID: 14729481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A TGF-beta-induced gene, betaig-h3, is crucial for the apoptotic disappearance of the medial edge epithelium in palate fusion.
    Choi KY; Kim HJ; Cho BC; Kim IS; Kim HJ; Ryoo HM
    J Cell Biochem; 2009 Jul; 107(4):818-25. PubMed ID: 19415673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of IRF6 and Jagged2 signalling is essential for controlling palatal adhesion and fusion competence.
    Richardson RJ; Dixon J; Jiang R; Dixon MJ
    Hum Mol Genet; 2009 Jul; 18(14):2632-42. PubMed ID: 19439425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward pathogenesis of Apert cleft palate: FGF, FGFR, and TGF beta genes are differentially expressed in sequential stages of human palatal shelf fusion.
    Britto JA; Evans RD; Hayward RD; Jones BM
    Cleft Palate Craniofac J; 2002 May; 39(3):332-40. PubMed ID: 12019011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunohistochemical localization of TGF-beta type II receptor and TGF-beta3 during palatogenesis in vivo and in vitro.
    Cui XM; Warburton D; Zhao J; Crowe DL; Shuler CF
    Int J Dev Biol; 1998 Sep; 42(6):817-20. PubMed ID: 9727838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the epithelial adhesion molecule CEACAM1 is important for palate formation.
    Mima J; Koshino A; Oka K; Uchida H; Hieda Y; Nohara K; Kogo M; Chai Y; Sakai T
    PLoS One; 2013; 8(4):e61653. PubMed ID: 23613893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.