These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 31388006)

  • 21. Phase resetting of circadian peripheral clocks using human and rodent diets in mouse models of type 2 diabetes and chronic kidney disease.
    Yasuda S; Iwami S; Tamura K; Ikeda Y; Kamagata M; Sasaki H; Haraguchi A; Miyamatsu M; Hanashi S; Takato Y; Shibata S
    Chronobiol Int; 2019 Jun; 36(6):851-869. PubMed ID: 30990101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Entrainment of mouse peripheral circadian clocks to <24 h feeding/fasting cycles under 24 h light/dark conditions.
    Hamaguchi Y; Tahara Y; Kuroda H; Haraguchi A; Shibata S
    Sci Rep; 2015 Sep; 5():14207. PubMed ID: 26395309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differentiating external zeitgeber impact on peripheral circadian clock resetting.
    Heyde I; Oster H
    Sci Rep; 2019 Dec; 9(1):20114. PubMed ID: 31882641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Entrainment of circadian clocks in mammals by arousal and food.
    Mistlberger RE; Antle MC
    Essays Biochem; 2011 Jun; 49(1):119-36. PubMed ID: 21819388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid damping of food-entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues under fasting conditions.
    Horikawa K; Minami Y; Iijima M; Akiyama M; Shibata S
    Neuroscience; 2005; 134(1):335-43. PubMed ID: 15961241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats - a potential role for Bmal2 in the liver.
    Polidarová L; Sládek M; Nováková M; Parkanová D; Sumová A
    PLoS One; 2013; 8(9):e75690. PubMed ID: 24086613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of metabolic and cardiovascular diurnal rhythms by circadian clock.
    Kohsaka A; Waki H; Cui H; Gouraud SS; Maeda M
    Endocr J; 2012; 59(6):447-56. PubMed ID: 22361995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Daily rhythms of clock gene expression and feeding behavior during the larval development in gilthead seabream, Sparus aurata.
    Mata-Sotres JA; Martínez-Rodríguez G; Pérez-Sánchez J; Sánchez-Vázquez FJ; Yúfera M
    Chronobiol Int; 2015; 32(8):1061-74. PubMed ID: 26317659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feeding entrainment of food-anticipatory activity and per1 expression in the brain and liver of zebrafish under different lighting and feeding conditions.
    López-Olmeda JF; Tartaglione EV; de la Iglesia HO; Sánchez-Vázquez FJ
    Chronobiol Int; 2010 Aug; 27(7):1380-400. PubMed ID: 20795882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maternal eating behavior is a major synchronizer of fetal and postnatal peripheral clocks in mice.
    Canaple L; Gréchez-Cassiau A; Delaunay F; Dkhissi-Benyahya O; Samarut J
    Cell Mol Life Sci; 2018 Nov; 75(21):3991-4005. PubMed ID: 29804258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sleep Deprivation and Caffeine Treatment Potentiate Photic Resetting of the Master Circadian Clock in a Diurnal Rodent.
    Jha PK; Bouâouda H; Gourmelen S; Dumont S; Fuchs F; Goumon Y; Bourgin P; Kalsbeek A; Challet E
    J Neurosci; 2017 Apr; 37(16):4343-4358. PubMed ID: 28320839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of light and food on the circadian clock in liver of rainbow trout, Oncorhynchus mykiss.
    Hernández-Pérez J; Míguez JM; Naderi F; Soengas JL; López-Patiño MA
    Chronobiol Int; 2017; 34(9):1259-1272. PubMed ID: 28933632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Mathematical Model of the Liver Circadian Clock Linking Feeding and Fasting Cycles to Clock Function.
    Woller A; Duez H; Staels B; Lefranc M
    Cell Rep; 2016 Oct; 17(4):1087-1097. PubMed ID: 27760313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of circadian gene expression in the kidney by light and food cues in rats.
    Wu T; Ni Y; Dong Y; Xu J; Song X; Kato H; Fu Z
    Am J Physiol Regul Integr Comp Physiol; 2010 Mar; 298(3):R635-41. PubMed ID: 20053963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-lived alphaMUPA transgenic mice exhibit pronounced circadian rhythms.
    Froy O; Chapnik N; Miskin R
    Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E1017-24. PubMed ID: 16787960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase-delay in the light-dark cycle impairs clock gene expression and levels of serotonin, norepinephrine, and their metabolites in the mouse hippocampus and amygdala.
    Moriya S; Tahara Y; Sasaki H; Ishigooka J; Shibata S
    Sleep Med; 2015 Nov; 16(11):1352-1359. PubMed ID: 26498235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoperiodic modulation of the hepatic clock by the suprachiasmatic nucleus and feeding regime in mice.
    Parkanová D; Nováková M; Sosniyenko S; Sumová A
    Eur J Neurosci; 2012 May; 35(9):1446-57. PubMed ID: 22564073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Circadian clocks and energy metabolism in rodents].
    Challet E
    Biol Aujourdhui; 2014; 208(4):269-74. PubMed ID: 25840453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase shifts in circadian peripheral clocks caused by exercise are dependent on the feeding schedule in PER2::LUC mice.
    Sasaki H; Hattori Y; Ikeda Y; Kamagata M; Iwami S; Yasuda S; Shibata S
    Chronobiol Int; 2016; 33(7):849-62. PubMed ID: 27123825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circadian modification network of a core clock driver BMAL1 to harmonize physiology from brain to peripheral tissues.
    Tamaru T; Takamatsu K
    Neurochem Int; 2018 Oct; 119():11-16. PubMed ID: 29305918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.