These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31388024)

  • 21. Physical activity and weight maintenance: the utility of wearable devices and mobile health technology in research and clinical settings.
    Riffenburg KM; Spartano NL
    Curr Opin Endocrinol Diabetes Obes; 2018 Oct; 25(5):310-314. PubMed ID: 30063553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using wearable technology to detect the autonomic signature of illness severity in schizophrenia.
    Cella M; Okruszek Ł; Lawrence M; Zarlenga V; He Z; Wykes T
    Schizophr Res; 2018 May; 195():537-542. PubMed ID: 28986005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Multichannel Convolutional Neural Network Architecture for the Detection of the State of Mind Using Physiological Signals from Wearable Devices.
    Chakraborty S; Aich S; Joo MI; Sain M; Kim HC
    J Healthc Eng; 2019; 2019():5397814. PubMed ID: 31687119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-Intensity Physical Activity and All-Cause Mortality.
    Loprinzi PD
    Am J Health Promot; 2017 Jul; 31(4):340-342. PubMed ID: 26730555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance Analysis of Gyroscope and Accelerometer Sensors for Seismocardiography-Based Wearable Pre-Ejection Period Estimation.
    Shandhi MMH; Semiz B; Hersek S; Goller N; Ayazi F; Inan OT
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2365-2374. PubMed ID: 30703050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances.
    Zhang S; Li Y; Zhang S; Shahabi F; Xia S; Deng Y; Alshurafa N
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Designing personal exercise monitoring employing multiple modes of delivery: implications from a qualitative study on heart rate monitoring.
    Segerståhl K; Oinas-Kukkonen H
    Int J Med Inform; 2011 Dec; 80(12):e203-13. PubMed ID: 21963231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. LSTM-Based ECG Classification for Continuous Monitoring on Personal Wearable Devices.
    Saadatnejad S; Oveisi M; Hashemi M
    IEEE J Biomed Health Inform; 2020 Feb; 24(2):515-523. PubMed ID: 30990452
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Evaluation of physical activity using smartphones and wearable devices in healthcare: Current situation and future perspectives].
    Amagasa S; Kojin H; Kamada M; Fukuoka Y; Inoue S
    Nihon Koshu Eisei Zasshi; 2021 Sep; 68(9):585-596. PubMed ID: 34121060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep longitudinal phenotyping of wearable sensor data reveals independent markers of longevity, stress, and resilience.
    Pyrkov TV; Sokolov IS; Fedichev PO
    Aging (Albany NY); 2021 Mar; 13(6):7900-7913. PubMed ID: 33735108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recognition of Sedentary Behavior by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living for Telemedical Assessment of Cardiovascular Risk.
    Kańtoch E
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying the Varying Predictive Value of Physical Activity Measures Obtained from Wearable Accelerometers on All-Cause Mortality over Short to Medium Time Horizons in NHANES 2003-2006.
    Tabacu L; Ledbetter M; Leroux A; Crainiceanu C; Smirnova E
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wearable IoT Smart-Log Patch: An Edge Computing-Based Bayesian Deep Learning Network System for Multi Access Physical Monitoring System.
    Manogaran G; Shakeel PM; Fouad H; Nam Y; Baskar S; Chilamkurti N; Sundarasekar R
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31324070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accuracy of 12 Wearable Devices for Estimating Physical Activity Energy Expenditure Using a Metabolic Chamber and the Doubly Labeled Water Method: Validation Study.
    Murakami H; Kawakami R; Nakae S; Yamada Y; Nakata Y; Ohkawara K; Sasai H; Ishikawa-Takata K; Tanaka S; Miyachi M
    JMIR Mhealth Uhealth; 2019 Aug; 7(8):e13938. PubMed ID: 31376273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wrist sensor-based tremor severity quantification in Parkinson's disease using convolutional neural network.
    Kim HB; Lee WW; Kim A; Lee HJ; Park HY; Jeon HS; Kim SK; Jeon B; Park KS
    Comput Biol Med; 2018 Apr; 95():140-146. PubMed ID: 29500984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficacy and Safety of an mHealth App and Wearable Device in Physical Performance for Patients With Hepatocellular Carcinoma: Development and Usability Study.
    Kim Y; Seo J; An SY; Sinn DH; Hwang JH
    JMIR Mhealth Uhealth; 2020 Mar; 8(3):e14435. PubMed ID: 32159517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Learning-Based Energy Expenditure Estimation in Assisted and Non-Assisted Gait Using Inertial, EMG, and Heart Rate Wearable Sensors.
    Lopes JM; Figueiredo J; Fonseca P; Cerqueira JJ; Vilas-Boas JP; Santos CP
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Learning for Medication Assessment of Individuals with Parkinson's Disease Using Wearable Sensors.
    Hssayeni MD; Adams JL; Ghoraani B
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units.
    Cesareo A; Biffi E; Cuesta-Frau D; D'Angelo MG; Aliverti A
    Med Biol Eng Comput; 2020 Apr; 58(4):785-804. PubMed ID: 32002753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.