These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31388189)

  • 1. Transparency induced in opals via nanometer thick conformal coating.
    Shang G; Furlan KP; Zierold R; Blick RH; Janßen R; Petrov A; Eich M
    Sci Rep; 2019 Aug; 9(1):11379. PubMed ID: 31388189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Alumina Addition on the Optical Properties and the Thermal Stability of Titania Thin Films and Inverse Opals Produced by Atomic Layer Deposition.
    Waleczek M; Dendooven J; Dyachenko P; Petrov AY; Eich M; Blick RH; Detavernier C; Nielsch K; Furlan KP; Zierold R
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33924052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonaqueous sol-gel chemistry applied to atomic layer deposition: tuning of photonic band gap properties of silica opals.
    Marichy C; Dechézelles JF; Willinger MG; Pinna N; Ravaine S; Vallée R
    Nanoscale; 2010 May; 2(5):786-92. PubMed ID: 20648325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically switchable photonic crystals based on liquid-crystal-infiltrated TiO
    Zhang Y; Li K; Su F; Cai Z; Liu J; Wu X; He H; Yin Z; Wang L; Wang B; Tian Y; Luo D; Sun XW; Liu YJ
    Opt Express; 2019 May; 27(11):15391-15398. PubMed ID: 31163736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spherical colloidal photonic crystals.
    Zhao Y; Shang L; Cheng Y; Gu Z
    Acc Chem Res; 2014 Dec; 47(12):3632-42. PubMed ID: 25393430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Very High Refractive Index Transition Metal Dichalcogenide Photonic Conformal Coatings by Conversion of ALD Metal Oxides.
    Chen CT; Pedrini J; Gaulding EA; Kastl C; Calafiore G; Dhuey S; Kuykendall TR; Cabrini S; Toma FM; Aloni S; Schwartzberg AM
    Sci Rep; 2019 Feb; 9(1):2768. PubMed ID: 30808883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled Insertion of Planar Defect in Inverse Opals for Anticounterfeiting Applications.
    Heo Y; Lee SY; Kim JW; Jeon TY; Kim SH
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43098-43104. PubMed ID: 29165980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic bandgap of inverse opals prepared from core-shell spheres.
    Liu BT; Lin YL; Huang SX
    Nanoscale Res Lett; 2012 Aug; 7(1):457. PubMed ID: 22894600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tantalum(V) nitride inverse opals as photonic structures for visible wavelengths.
    Rugge A; Park JS; Gordon RG; Tolbert SH
    J Phys Chem B; 2005 Mar; 109(9):3764-71. PubMed ID: 16851423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-Induced Coloration and Interface Shell Cross-Linking for the Preparation of Polymer-Based Opal Films.
    Schlander AM; Gallei M
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44764-44773. PubMed ID: 31674752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals.
    Bechger L; Lodahl P; Vos WL
    J Phys Chem B; 2005 May; 109(20):9980-8. PubMed ID: 16852206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint Effects of Photoactive TiO2 and Fluoride-Doping on SnO2 Inverse Opal Nanoarchitecture for Solar Water Splitting.
    Gun Y; Song GY; Quy VH; Heo J; Lee H; Ahn KS; Kang SH
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20292-303. PubMed ID: 26322646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-opals interaction modeling by direct numerical solution of Maxwell's equations.
    Vaccari A; Lesina AC; Cristoforetti L; Chiappini A; Crema L; Calliari L; Ramunno L; Berini P; Ferrari M
    Opt Express; 2014 Nov; 22(22):27739-49. PubMed ID: 25401918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse silica opal photonic crystals for optical sensing applications.
    Nishijima Y; Ueno K; Juodkazis S; Mizeikis V; Misawa H; Tanimura T; Maeda K
    Opt Express; 2007 Oct; 15(20):12979-88. PubMed ID: 19550567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluoropolymer-Containing Opals and Inverse Opals by Melt-Shear Organization.
    Kredel J; Dietz C; Gallei M
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30658515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eliminated Phototoxicity of TiO2 Particles by an Atomic-Layer-Deposited Al2 O3 Coating Layer for UV-Protection Applications.
    Jang E; Sridharan K; Park YM; Park TJ
    Chemistry; 2016 Aug; 22(34):12022-6. PubMed ID: 27405514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ternary inverse opal system for convenient and reversible photonic bandgap tuning.
    Liu ZF; Ding T; Zhang G; Song K; Clays K; Tung CH
    Langmuir; 2008 Sep; 24(18):10519-23. PubMed ID: 18717578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thick Free-Standing Metallic Inverse Opals Enabled by New Insights into the Fracture of Drying Particle Films.
    Jiang Z; Hsain Z; Pikul JH
    Langmuir; 2020 Jul; 36(26):7315-7324. PubMed ID: 32501700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon structures with three-dimensional periodicity at optical wavelengths.
    Zakhidov AA; Baughman RH; Iqbal Z; Cui C; Khayrullin I; Dantas SO; Marti J; Ralchenko VG
    Science; 1998 Oct; 282(5390):897-901. PubMed ID: 9794752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The influential factors of MOCVD growth of InP in opals].
    Tan CH; Fan GH; Huang XG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Dec; 28(12):2763-7. PubMed ID: 19248478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.