These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 31388766)
1. Microstructure and mechanical properties of additive manufactured porous Ti-33Nb-4Sn scaffolds for orthopaedic applications. Cheng X; Liu S; Chen C; Chen W; Liu M; Li R; Zhang X; Zhou K J Mater Sci Mater Med; 2019 Aug; 30(8):91. PubMed ID: 31388766 [TBL] [Abstract][Full Text] [Related]
2. Porous TiNbZr alloy scaffolds for biomedical applications. Wang X; Li Y; Xiong J; Hodgson PD; Wen C Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597 [TBL] [Abstract][Full Text] [Related]
3. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications. Xiong J; Li Y; Wang X; Hodgson P; Wen C Acta Biomater; 2008 Nov; 4(6):1963-8. PubMed ID: 18524702 [TBL] [Abstract][Full Text] [Related]
4. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications. Li Y; Ding Y; Munir K; Lin J; Brandt M; Atrens A; Xiao Y; Kanwar JR; Wen C Acta Biomater; 2019 Mar; 87():273-284. PubMed ID: 30690210 [TBL] [Abstract][Full Text] [Related]
5. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727 [TBL] [Abstract][Full Text] [Related]
6. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. Han C; Li Y; Wang Q; Wen S; Wei Q; Yan C; Hao L; Liu J; Shi Y J Mech Behav Biomed Mater; 2018 Apr; 80():119-127. PubMed ID: 29414467 [TBL] [Abstract][Full Text] [Related]
7. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications. Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962 [TBL] [Abstract][Full Text] [Related]
9. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Yan C; Hao L; Hussein A; Young P J Mech Behav Biomed Mater; 2015 Nov; 51():61-73. PubMed ID: 26210549 [TBL] [Abstract][Full Text] [Related]
10. Effect of niobium content on the microstructure and Young's modulus of Ti-xNb-7Zr alloys for medical implants. Tan MHC; Baghi AD; Ghomashchi R; Xiao W; Oskouei RH J Mech Behav Biomed Mater; 2019 Nov; 99():78-85. PubMed ID: 31344525 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the mechanical compatibility of additively manufactured porous Ti-25Ta alloy for load-bearing implant applications. Soro N; Attar H; Brodie E; Veidt M; Molotnikov A; Dargusch MS J Mech Behav Biomed Mater; 2019 Sep; 97():149-158. PubMed ID: 31121433 [TBL] [Abstract][Full Text] [Related]
12. Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres. Zou C; Zhang E; Li M; Zeng S J Mater Sci Mater Med; 2008 Jan; 19(1):401-5. PubMed ID: 17607525 [TBL] [Abstract][Full Text] [Related]
13. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Fischer M; Joguet D; Robin G; Peltier L; Laheurte P Mater Sci Eng C Mater Biol Appl; 2016 May; 62():852-9. PubMed ID: 26952492 [TBL] [Abstract][Full Text] [Related]
14. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method. Rao X; Chu CL; Zheng YY J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322 [TBL] [Abstract][Full Text] [Related]
16. Properties of a porous Ti-6Al-4V implant with a low stiffness for biomedical application. Li X; Wang CT; Zhang WG; Li YC Proc Inst Mech Eng H; 2009 Feb; 223(2):173-8. PubMed ID: 19278194 [TBL] [Abstract][Full Text] [Related]
17. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure. Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970 [TBL] [Abstract][Full Text] [Related]
18. Effects of pore size and porosity on cytocompatibility and osteogenic differentiation of porous titanium. Yao YT; Yang Y; Ye Q; Cao SS; Zhang XP; Zhao K; Jian Y J Mater Sci Mater Med; 2021 Jun; 32(6):72. PubMed ID: 34125310 [TBL] [Abstract][Full Text] [Related]
19. Mechanical properties tailoring of topology optimized and selective laser melting fabricated Ti6Al4V lattice structure. Xu Y; Zhang D; Hu S; Chen R; Gu Y; Kong X; Tao J; Jiang Y J Mech Behav Biomed Mater; 2019 Nov; 99():225-239. PubMed ID: 31400657 [TBL] [Abstract][Full Text] [Related]
20. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn. Verissimo NC; Geilich BM; Oliveira HG; Caram R; Webster TJ J Biomed Mater Res A; 2015 Dec; 103(12):3757-63. PubMed ID: 26033413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]