These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 31388952)
41. Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: A four-season field experiment. Shi L; Guo Z; Peng C; Xiao X; Feng W; Huang B; Ran H Ecotoxicol Environ Saf; 2019 Apr; 171():425-434. PubMed ID: 30639868 [TBL] [Abstract][Full Text] [Related]
42. [Effect and mechanism of immobilization of cadmium and lead compound contaminated soil using new hybrid material]. Wang L; Xu YM; Liang XF; Sun Y; Qin X Huan Jing Ke Xue; 2011 Feb; 32(2):581-8. PubMed ID: 21528587 [TBL] [Abstract][Full Text] [Related]
43. Sodium chloride salinity reduces Cd uptake by edible amaranth (Amaranthus mangostanus L.) via competition for Ca channels. Mei X; Li S; Li Q; Yang Y; Luo X; He B; Li H; Xu Z Ecotoxicol Environ Saf; 2014 Jul; 105():59-64. PubMed ID: 24785711 [TBL] [Abstract][Full Text] [Related]
44. Effect of fertilizers on Cd uptake of Amaranthus hypochondriacus, a high biomass, fast growing and easily cultivated potential Cd hyperaccumulator. Li NY; Fu QL; Zhuang P; Guo B; Zou B; Li ZA Int J Phytoremediation; 2012 Feb; 14(2):162-73. PubMed ID: 22567702 [TBL] [Abstract][Full Text] [Related]
45. Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice. Panhwar QA; Radziah O; Zaharah AR; Sariah M; Razi IM J Environ Biol; 2011 Sep; 32(5):607-12. PubMed ID: 22319876 [TBL] [Abstract][Full Text] [Related]
46. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Wang K; Liu Y; Song Z; Wang D; Qiu W Chemosphere; 2019 Dec; 237():124480. PubMed ID: 31394449 [TBL] [Abstract][Full Text] [Related]
47. Cadmium accumulation and physiological response of Amaranthus tricolor L. under soil and atmospheric stresses. Liu C; Xiao R; Dai W; Huang F; Yang X Environ Sci Pollut Res Int; 2021 Mar; 28(11):14041-14053. PubMed ID: 33205273 [TBL] [Abstract][Full Text] [Related]
48. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Park JH; Bolan N; Megharaj M; Naidu R J Hazard Mater; 2011 Jan; 185(2-3):829-36. PubMed ID: 20971555 [TBL] [Abstract][Full Text] [Related]
49. Sorption-bioavailability nexus of arsenic and cadmium in variable-charge soils. Bolan N; Mahimairaja S; Kunhikrishnan A; Naidu R J Hazard Mater; 2013 Oct; 261():725-32. PubMed ID: 23177243 [TBL] [Abstract][Full Text] [Related]
50. Selenium application alters soil cadmium bioavailability and reduces its accumulation in rice grown in Cd-contaminated soil. Huang Q; Xu Y; Liu Y; Qin X; Huang R; Liang X Environ Sci Pollut Res Int; 2018 Nov; 25(31):31175-31182. PubMed ID: 30187416 [TBL] [Abstract][Full Text] [Related]
51. A regulating method for the distribution of phosphorus fractions based on environmental parameters related to the key phosphate-solubilizing bacteria during composting. Wei Y; Wei Z; Cao Z; Zhao Y; Zhao X; Lu Q; Wang X; Zhang X Bioresour Technol; 2016 Jul; 211():610-7. PubMed ID: 27043056 [TBL] [Abstract][Full Text] [Related]
52. Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization. Teng Z; Shao W; Zhang K; Huo Y; Li M J Environ Manage; 2019 Feb; 231():189-197. PubMed ID: 30342331 [TBL] [Abstract][Full Text] [Related]
53. [Plant growth and Cd accumulation characteristics in different planting modes of maize and Amaranthus hypochondriacus.]. Guo N; Chi GY; Shi Y; Chen X Ying Yong Sheng Tai Xue Bao; 2019 Sep; 30(9):3164-3174. PubMed ID: 31529892 [TBL] [Abstract][Full Text] [Related]
54. Urea reduces the sustainability of soil Cd immobilization by upregulating the expression of AmSTOP1 and AmMATE genes in edible amaranth roots. Wang FP; Wang JF; He T; Tian P; Song XQ; Li QS Environ Pollut; 2024 Mar; 345():123505. PubMed ID: 38325515 [TBL] [Abstract][Full Text] [Related]
55. Influences of calcium silicate on chemical forms and subcellular distribution of cadmium in Amaranthus hypochondriacus L. Lu H; Li Z; Wu J; Shen Y; Li Y; Zou B; Tang Y; Zhuang P Sci Rep; 2017 Jan; 7():40583. PubMed ID: 28074912 [TBL] [Abstract][Full Text] [Related]
56. Effect of coal mine soil contamination on the elemental uptake and distribution in two edible Amaranthus species, A. dubius and A. hybridus. Jonnalagadda SB; Kindness A; Chunilall V J Environ Sci Health B; 2006; 41(5):747-64. PubMed ID: 16785180 [TBL] [Abstract][Full Text] [Related]
57. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils. Park JH; Bolan N; Megharaj M; Naidu R Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488 [TBL] [Abstract][Full Text] [Related]
58. Cadmium and arsenic accumulation during the rice growth period under in situ remediation. Gu JF; Zhou H; Tang HL; Yang WT; Zeng M; Liu ZM; Peng PQ; Liao BH Ecotoxicol Environ Saf; 2019 Apr; 171():451-459. PubMed ID: 30639871 [TBL] [Abstract][Full Text] [Related]
59. Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). Treesubsuntorn C; Dhurakit P; Khaksar G; Thiravetyan P Environ Sci Pollut Res Int; 2018 Sep; 25(26):25690-25701. PubMed ID: 28480489 [TBL] [Abstract][Full Text] [Related]
60. Effects of mulching tolerant plant straw on soil surface on growth and cadmium accumulation of Galinsoga parviflora. Lin L; Liao M; Ren Y; Luo L; Zhang X; Yang D; He J PLoS One; 2014; 9(12):e114957. PubMed ID: 25490210 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]