These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 31389069)

  • 1. Parallel transmission to reduce absorbed power around deep brain stimulation devices in MRI: Impact of number and arrangement of transmit channels.
    Guerin B; Angelone LM; Dougherty D; Wald LL
    Magn Reson Med; 2020 Jan; 83(1):299-311. PubMed ID: 31389069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI.
    McElcheran CE; Golestanirad L; Iacono MI; Wei PS; Yang B; Anderson KJT; Bonmassar G; Graham SJ
    Sci Rep; 2019 Feb; 9(1):2124. PubMed ID: 30765724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging.
    McElcheran CE; Yang B; Anderson KJ; Golenstani-Rad L; Graham SJ
    PLoS One; 2015; 10(8):e0134379. PubMed ID: 26237218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Realistic modeling of deep brain stimulation implants for electromagnetic MRI safety studies.
    Guerin B; Serano P; Iacono MI; Herrington TM; Widge AS; Dougherty DD; Bonmassar G; Angelone LM; Wald LL
    Phys Med Biol; 2018 May; 63(9):095015. PubMed ID: 29637905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-Tesla MRI of deep brain stimulation patients: safety assessment of coils and pulse sequences.
    Boutet A; Hancu I; Saha U; Crawley A; Xu DS; Ranjan M; Hlasny E; Chen R; Foltz W; Sammartino F; Coblentz A; Kucharczyk W; Lozano AM
    J Neurosurg; 2020 Feb; 132(2):586-594. PubMed ID: 30797197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel transmit pulse design for patients with deep brain stimulation implants.
    Eryaman Y; Guerin B; Akgun C; Herraiz JL; Martin A; Torrado-Carvajal A; Malpica N; Hernandez-Tamames JA; Schiavi E; Adalsteinsson E; Wald LL
    Magn Reson Med; 2015 May; 73(5):1896-903. PubMed ID: 24947104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of tight-fitting 7T parallel-transmit head array designs using excitation uniformity and local specific absorption rate metrics.
    Kazemivalipour E; Wald LL; Guerin B
    Magn Reson Med; 2024 Mar; 91(3):1209-1224. PubMed ID: 37927216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T.
    Kazemivalipour E; Sadeghi-Tarakameh A; Keil B; Eryaman Y; Atalar E; Golestanirad L
    PLoS One; 2023; 18(1):e0280655. PubMed ID: 36701285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel radiofrequency transmission at 3 tesla to improve safety in bilateral implanted wires in a heterogeneous model.
    McElcheran CE; Yang B; Anderson KJT; Golestanirad L; Graham SJ
    Magn Reson Med; 2017 Dec; 78(6):2406-2415. PubMed ID: 28244142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficiency metrics.
    Guérin B; Gebhardt M; Serano P; Adalsteinsson E; Hamm M; Pfeuffer J; Nistler J; Wald LL
    Magn Reson Med; 2015 Mar; 73(3):1137-50. PubMed ID: 24752979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surgical modification of deep brain stimulation lead trajectories on radiofrequency heating during MRI at 3T: from phantom experiments to clinical implementation.
    Vu J; Bhusal B; Rosenow JM; Pilitsis J; Golestanirad L
    J Neurosurg; 2024 May; 140(5):1459-1470. PubMed ID: 37948679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigurable MRI technology for low-SAR imaging of deep brain stimulation at 3T: Application in bilateral leads, fully-implanted systems, and surgically modified lead trajectories.
    Kazemivalipour E; Keil B; Vali A; Rajan S; Elahi B; Atalar E; Wald LL; Rosenow J; Pilitsis J; Golestanirad L
    Neuroimage; 2019 Oct; 199():18-29. PubMed ID: 31096058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices.
    Kahan J; Papadaki A; White M; Mancini L; Yousry T; Zrinzo L; Limousin P; Hariz M; Foltynie T; Thornton J
    PLoS One; 2015; 10(6):e0129077. PubMed ID: 26061738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A workflow for predicting radiofrequency-induced heating around bilateral deep brain stimulation electrodes in MRI.
    Zulkarnain NIH; Sadeghi-Tarakameh A; Thotland J; Harel N; Eryaman Y
    Med Phys; 2024 Feb; 51(2):1007-1018. PubMed ID: 38153187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphoton parallel transmission (MP-pTx): Pulse design methods and numerical validation.
    Drago JM; Guerin B; Stockmann JP; Wald LL
    Magn Reson Med; 2024 Oct; 92(4):1376-1391. PubMed ID: 38899391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of RF body coils for MRI at 3  T: a simulation study using parallel transmission on various anatomical targets.
    Wu X; Zhang X; Tian J; Schmitter S; Hanna B; Strupp J; Pfeuffer J; Hamm M; Wang D; Nistler J; He B; Vaughan TJ; Ugurbil K; Van de Moortele PF
    NMR Biomed; 2015 Oct; 28(10):1332-44. PubMed ID: 26332290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RF heating of deep brain stimulation implants during MRI in 1.2 T vertical scanners versus 1.5 T horizontal systems: A simulation study with realistic lead configurations.
    Kazemivalipour E; Vu J; Lin S; Bhusal B; Thanh Nguyen B; Kirsch J; Elahi B; Rosenow J; Atalar E; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6143-6146. PubMed ID: 33019373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RF heating of deep brain stimulation implants in open-bore vertical MRI systems: A simulation study with realistic device configurations.
    Golestanirad L; Kazemivalipour E; Lampman D; Habara H; Atalar E; Rosenow J; Pilitsis J; Kirsch J
    Magn Reson Med; 2020 Jun; 83(6):2284-2292. PubMed ID: 31677308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local SAR near deep brain stimulation (DBS) electrodes at 64 and 127 MHz: A simulation study of the effect of extracranial loops.
    Golestanirad L; Angelone LM; Iacono MI; Katnani H; Wald LL; Bonmassar G
    Magn Reson Med; 2017 Oct; 78(4):1558-1565. PubMed ID: 27797157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.