These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31389177)

  • 1. A Functionalized Carbon Surface for High-Performance Sodium-Ion Storage.
    Lin Q; Zhang J; Lv W; Ma J; He Y; Kang F; Yang QH
    Small; 2020 Apr; 16(15):e1902603. PubMed ID: 31389177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S-Doped Carbon Fibers Uniformly Embedded with Ultrasmall TiO
    Chen C; Li P; Wang T; Wang S; Zhang M
    Small; 2019 Sep; 15(38):e1902201. PubMed ID: 31318168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Active Sites of Carbon for High-Rate Surface-Capacitive Sodium-Ion Storage.
    Wang G; Shao M; Ding H; Qi Y; Lian J; Li S; Qiu J; Li H; Huo F
    Angew Chem Int Ed Engl; 2019 Sep; 58(38):13584-13589. PubMed ID: 31329345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doping Engineering in Electrode Material for Boosting the Performance of Sodium Ion Batteries.
    Kumar K; Kundu R
    ACS Appl Mater Interfaces; 2024 Jun; ():. PubMed ID: 38920092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-heteroatom-doped dual carbon-confined Fe
    Tao X; Li Y; Wang HG; Lv X; Li Y; Xu D; Jiang Y; Meng Y
    J Colloid Interface Sci; 2020 Apr; 565():494-502. PubMed ID: 31982716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Flexible Sulfur-Enriched Nitrogen Doped Multichannel Hollow Carbon Nanofibers Film for High Performance Sodium Storage.
    Sun X; Wang C; Gong Y; Gu L; Chen Q; Yu Y
    Small; 2018 Aug; 14(35):e1802218. PubMed ID: 30079621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of Carbon Nanomaterials for Electrochemical Sodium Storage and Capture.
    Kim J; Choi MS; Shin KH; Kota M; Kang Y; Lee S; Lee JY; Park HS
    Adv Mater; 2019 Aug; 31(34):e1803444. PubMed ID: 31012183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoengineering of Advanced Carbon Materials for Sodium-Ion Batteries.
    Zhao S; Guo Z; Yang J; Wang C; Sun B; Wang G
    Small; 2021 Dec; 17(48):e2007431. PubMed ID: 33728756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na
    Zhang X; Rui X; Chen D; Tan H; Yang D; Huang S; Yu Y
    Nanoscale; 2019 Feb; 11(6):2556-2576. PubMed ID: 30672554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage.
    Chen W; Yu H; Lee SY; Wei T; Li J; Fan Z
    Chem Soc Rev; 2018 Apr; 47(8):2837-2872. PubMed ID: 29561005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doping Regulation in Polyanionic Compounds for Advanced Sodium-Ion Batteries.
    Xiao L; Ji F; Zhang J; Chen X; Fang Y
    Small; 2023 Jan; 19(1):e2205732. PubMed ID: 36373668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na Storage Activity or Inertness of P-Configurations in N, P Dual-Doped Carbon Nanofibers: Bulk vs Surface.
    Gao S; Liu E; Wang N; Xu J; Ma G; Zhou J
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56836-56846. PubMed ID: 36511695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in the Rational Design and Synthesis of Two-Dimensional Materials for Multivalent Ion Batteries.
    Cui L; Zhou L; Kang YM; An Q
    ChemSusChem; 2020 Mar; 13(6):1071-1092. PubMed ID: 32034886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress in Iron-Based Electrode Materials for Grid-Scale Sodium-Ion Batteries.
    Fang Y; Chen Z; Xiao L; Ai X; Cao Y; Yang H
    Small; 2018 Mar; 14(9):. PubMed ID: 29318782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The lithium ions storage behavior of heteroatom-mediated echinus-like porous carbon spheres: From co-doping to multi-atom doping.
    Chen Z; Li H
    J Colloid Interface Sci; 2020 May; 567():54-64. PubMed ID: 32036114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hard Carbons for Sodium-Ion Battery Anodes: Synthetic Strategies, Material Properties, and Storage Mechanisms.
    Wahid M; Puthusseri D; Gawli Y; Sharma N; Ogale S
    ChemSusChem; 2018 Feb; 11(3):506-526. PubMed ID: 29098791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capacitive Sodium-Ion Storage Based on Double-Layered Mesoporous Graphene with High Capacity and Charging/Discharging Rate.
    Zhu X; Jiang Q; Wang T; Zhang Q; Jia X; Zhang R
    ChemSusChem; 2019 Sep; 12(18):4323-4331. PubMed ID: 31045318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-Based Alloy-Type Composite Anode Materials toward Sodium-Ion Batteries.
    Yang G; Ilango PR; Wang S; Nasir MS; Li L; Ji D; Hu Y; Ramakrishna S; Yan W; Peng S
    Small; 2019 May; 15(22):e1900628. PubMed ID: 30969031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focus on Spinel Li
    Natarajan S; Subramanyan K; Aravindan V
    Small; 2019 Dec; 15(49):e1904484. PubMed ID: 31660684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfur-/Nitrogen-Rich Albumen Derived "Self-Doping" Graphene for Sodium-Ion Storage.
    Li S; Li Z; Cao G; Ling M; Ji J; Zhao D; Sha Y; Gao X; Liang C
    Chemistry; 2019 Nov; 25(63):14358-14363. PubMed ID: 31423674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.