These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 31389435)
1. NMR shifts in aluminosilicate glasses via machine learning. Chaker Z; Salanne M; Delaye JM; Charpentier T Phys Chem Chem Phys; 2019 Oct; 21(39):21709-21725. PubMed ID: 31389435 [TBL] [Abstract][Full Text] [Related]
2. Accelerating NMR Shielding Calculations Through Machine Learning Methods: Application to Magnesium Sodium Silicate Glasses. Bertani M; Pedone A; Faglioni F; Charpentier T Chemphyschem; 2024 Nov; 25(22):e202300782. PubMed ID: 39051606 [TBL] [Abstract][Full Text] [Related]
3. First-principles NMR of oxide glasses boosted by machine learning. Charpentier T Faraday Discuss; 2024 Sep; ():. PubMed ID: 39283591 [TBL] [Abstract][Full Text] [Related]
4. New Approach To Understanding the Experimental Ohkubo T; Takei A; Tachi Y; Fukatsu Y; Deguchi K; Ohki S; Shimizu T J Phys Chem A; 2023 Feb; 127(4):973-986. PubMed ID: 36657157 [TBL] [Abstract][Full Text] [Related]
5. First-principles calculation of the 17O NMR parameters of a calcium aluminosilicate glass. Benoit M; Profeta M; Mauri F; Pickard CJ; Tuckerman ME J Phys Chem B; 2005 Apr; 109(13):6052-60. PubMed ID: 16851665 [TBL] [Abstract][Full Text] [Related]
6. An ab initio calculation of 17O and 29Si NMR parameters for SiO2 polymorphs. Xue X; Kanzaki M Solid State Nucl Magn Reson; 2000 Jul; 16(4):245-59. PubMed ID: 10928629 [TBL] [Abstract][Full Text] [Related]
7. General Protocol for the Accurate Prediction of Molecular Gao P; Zhang J; Peng Q; Zhang J; Glezakou VA J Chem Inf Model; 2020 Aug; 60(8):3746-3754. PubMed ID: 32602715 [TBL] [Abstract][Full Text] [Related]
8. Nuclear magnetic resonance investigation of the structures of phosphate and phosphate-containing glasses: a review. Kirkpatrick RJ; Brow RK Solid State Nucl Magn Reson; 1995 Oct; 5(1):9-21. PubMed ID: 8748641 [TBL] [Abstract][Full Text] [Related]
9. Ab Initio Study of Hydrolysis Effects in Single and Ion-Exchanged Alkali Aluminosilicate Glasses. Baral K; Li A; Ching WY J Phys Chem B; 2020 Sep; 124(38):8418-8433. PubMed ID: 32842737 [TBL] [Abstract][Full Text] [Related]
10. Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations. Sklenak S; Dedecek J; Li C; Wichterlová B; Gábová V; Sierka M; Sauer J Phys Chem Chem Phys; 2009 Feb; 11(8):1237-47. PubMed ID: 19209368 [TBL] [Abstract][Full Text] [Related]
11. Explaining the effects of T-O-T bond angles on NMR chemical shifts in aluminosilicates: A natural bonding orbital (NBO) and natural chemical shielding (NCS) analysis. Liu Y; Nekvasil H; Tossell J J Phys Chem A; 2005 Apr; 109(13):3060-6. PubMed ID: 16833630 [TBL] [Abstract][Full Text] [Related]
12. Molecular Dynamics Simulation of Amorphous SiO Sahu P; Pente AA; Singh MD; Chowdhri IA; Sharma K; Goswami M; Ali SM; Shenoy KT; Mohan S J Phys Chem B; 2019 Jul; 123(29):6290-6302. PubMed ID: 31247137 [TBL] [Abstract][Full Text] [Related]
13. Calcium environment in silicate and aluminosilicate glasses probed by ⁴³Ca MQMAS NMR experiments and MD-GIPAW calculations. Gambuzzi E; Pedone A; Menziani MC; Angeli F; Florian P; Charpentier T Solid State Nucl Magn Reson; 2015; 68-69():31-6. PubMed ID: 25912209 [TBL] [Abstract][Full Text] [Related]
14. Al coordination and water speciation in hydrous aluminosilicate glasses: direct evidence from high-resolution heteronuclear 1H-27Al correlation NMR. Xue X; Kanzaki M Solid State Nucl Magn Reson; 2007 Feb; 31(1):10-27. PubMed ID: 17196798 [TBL] [Abstract][Full Text] [Related]
15. Thermal fluctuation and conformational effects on NMR parameters in β-O-4 lignin dimers from QM/MM and machine-learning approaches. Aguilera-Segura SM; Dragún D; Gaumard R; Di Renzo F; Ondík IM; Mineva T Phys Chem Chem Phys; 2022 Apr; 24(15):8820-8831. PubMed ID: 35352736 [TBL] [Abstract][Full Text] [Related]
16. Toward Accurate Predictions of Atomic Properties via Quantum Mechanics Descriptors Augmented Graph Convolutional Neural Network: Application of This Novel Approach in NMR Chemical Shifts Predictions. Gao P; Zhang J; Sun Y; Yu J J Phys Chem Lett; 2020 Nov; 11(22):9812-9818. PubMed ID: 33151693 [TBL] [Abstract][Full Text] [Related]
17. Probing local structure in zeolite frameworks: ultrahigh-field NMR measurements and accurate first-principles calculations of zeolite 29Si magnetic shielding tensors. Brouwer DH; Enright GD J Am Chem Soc; 2008 Mar; 130(10):3095-105. PubMed ID: 18281985 [TBL] [Abstract][Full Text] [Related]
18. Theoretical gas to liquid shift of (15)N isotropic nuclear magnetic shielding in nitromethane using ab initio molecular dynamics and GIAO/GIPAW calculations. Gerber IC; Jolibois F Phys Chem Chem Phys; 2015 May; 17(18):12222-7. PubMed ID: 25892187 [TBL] [Abstract][Full Text] [Related]
19. Contribution of first-principles calculations to multinuclear NMR analysis of borosilicate glasses. Soleilhavoup A; Delaye JM; Angeli F; Caurant D; Charpentier T Magn Reson Chem; 2010 Dec; 48 Suppl 1():S159-70. PubMed ID: 20818801 [TBL] [Abstract][Full Text] [Related]
20. A Machine Learning Model of Chemical Shifts for Chemically and Structurally Diverse Molecular Solids. Cordova M; Engel EA; Stefaniuk A; Paruzzo F; Hofstetter A; Ceriotti M; Emsley L J Phys Chem C Nanomater Interfaces; 2022 Oct; 126(39):16710-16720. PubMed ID: 36237276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]