BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 31389689)

  • 1. Expanded Graphite-Polyurethane Foams for Water-Oil Filtration.
    Vásquez L; Campagnolo L; Athanassiou A; Fragouli D
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30207-30217. PubMed ID: 31389689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface-Initiated Polymerization Enables One-Pot Synthesis of Hydrophilic and Oleophobic Foams through Emulsion Templating.
    Zhang T; Li X; Wang W; Xu Z; Zhao Y
    Macromol Rapid Commun; 2019 Nov; 40(21):e1900288. PubMed ID: 31517417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Separation of Oil/Water Mixtures by Modified Melamine and Polyurethane Foams: A Review.
    Hailan SM; Ponnamma D; Krupa I
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Understanding and Design of Porous Polyurethane Hydrogels with Ultralow-Oil-Adhesion for Oil-Water Separation.
    Huang J; Zhang Z; Weng J; Yu D; Liang Y; Xu X; Qiao Z; Zhang G; Yang H; Wu X
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56530-56540. PubMed ID: 33285071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyaniline coated membranes for effective separation of oil-in-water emulsions.
    Liu M; Li J; Guo Z
    J Colloid Interface Sci; 2016 Apr; 467():261-270. PubMed ID: 26809105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Waste to treasure: Superwetting foam enhanced by bamboo powder for sustainable on-demand oil-water separation.
    Wu D; Hu S; Lu B; Hu Y; Wang M; Yu W; Wang GG; Zhang J
    J Hazard Mater; 2023 Jan; 441():129829. PubMed ID: 36058186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of polymeric foams for oil spills remediation.
    Pinto J; Athanassiou A; Fragouli D
    J Environ Manage; 2018 Jan; 206():872-889. PubMed ID: 29202435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gravity-directed separation of both immiscible and emulsified oil/water mixtures utilizing coconut shell layer.
    Li J; Xu C; Zhang Y; Tang X; Qi W; Wang Q
    J Colloid Interface Sci; 2018 Feb; 511():233-242. PubMed ID: 29028574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Fabrication of Superhydrophobic Graphene/Polystyrene Foams for Efficient and Continuous Separation of Immiscible and Emulsified Oil/Water Mixtures.
    Zhao C; Huang H; Li J; Li Y; Xiang D; Wu Y; Wang G; Qin M
    Polymers (Basel); 2022 Jun; 14(11):. PubMed ID: 35683962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophilic-Oleophobic, Macroporous Polymers Enabled by In-Situ Polymerization and Foaming for Removing Water from Oils.
    Chi H; Xu Z; Cao H; Zhang T; Zhao Y
    Langmuir; 2023 Nov; 39(46):16676-16684. PubMed ID: 37939344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex treatment of oily polluted waters by modified melamine foams: from colloidal emulsions to a free oil removal.
    Hailan S; Sobolciak P; Popelka A; Kasak P; Adham S; Krupa I
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):97872-97887. PubMed ID: 37603252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flame-retardant superhydrophobic coating derived from fly ash on polymeric foam for efficient oil/corrosive water and emulsion separation.
    Wang J; Wang H; Geng G
    J Colloid Interface Sci; 2018 Sep; 525():11-20. PubMed ID: 29679796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose.
    Pang B; Liu H; Liu P; Peng X; Zhang K
    J Colloid Interface Sci; 2018 Mar; 513():629-637. PubMed ID: 29207345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Thermally Impacted Water-Induced Phase Separation Approach for the Fabrication of Skin-Free Thermoplastic Polyurethane Foam and Its Recyclable Counterpart for Oil-Water Separation.
    Wang X; Pan Y; Shen C; Liu C; Liu X
    Macromol Rapid Commun; 2018 Dec; 39(23):e1800635. PubMed ID: 30350323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions.
    Zhang W; Zhu Y; Liu X; Wang D; Li J; Jiang L; Jin J
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):856-60. PubMed ID: 24307602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eco-Friendly Superwetting Material for Highly Effective Separations of Oil/Water Mixtures and Oil-in-Water Emulsions.
    Wang CF; Yang SY; Kuo SW
    Sci Rep; 2017 Feb; 7():43053. PubMed ID: 28216617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric Aerogel Membranes with Ultrafast Water Permeation for the Separation of Oil-in-Water Emulsion.
    Liu Y; Su Y; Guan J; Cao J; Zhang R; He M; Jiang Z
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26546-26554. PubMed ID: 30024725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Closed Pore Structured NiCo
    Li Y; Zheng X; Yan Z; Tian D; Ma J; Zhang X; Jiang L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29177-29184. PubMed ID: 28799749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Hydrophobic and Superoleophilic Nanofibrous Mats with Controllable Pore Sizes for Efficient Oil/Water Separation.
    Song B; Xu Q
    Langmuir; 2016 Oct; 32(39):9960-9966. PubMed ID: 27616190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Superwetting Porous Materials for Ultrafast Separation of Water-in-Oil Emulsions.
    Wang CF; Chen LT
    Langmuir; 2017 Feb; 33(8):1969-1973. PubMed ID: 28145718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.