These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31389960)

  • 1. Harnessing combinational phototherapy via post-synthetic PpIX conjugation on nanoscale metal-organic frameworks.
    Chen R; Chen WC; Yan L; Tian S; Liu B; Chen X; Lee CS; Zhang W
    J Mater Chem B; 2019 Aug; 7(31):4763-4770. PubMed ID: 31389960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen Self-Sufficient Core-Shell Metal-Organic Framework-Based Smart Nanoplatform for Enhanced Synergistic Chemotherapy and Photodynamic Therapy.
    Ren SZ; Wang B; Zhu XH; Zhu D; Liu M; Li SK; Yang YS; Wang ZC; Zhu HL
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24662-24674. PubMed ID: 32394704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEGylated hydrazided gold nanorods for pH-triggered chemo/photodynamic/photothermal triple therapy of breast cancer.
    Xu W; Qian J; Hou G; Wang Y; Wang J; Sun T; Ji L; Suo A; Yao Y
    Acta Biomater; 2018 Dec; 82():171-183. PubMed ID: 30336271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Covalent Organic Framework for Combinatorial Antitumor Photodynamic and Photothermal Therapy.
    Guan Q; Zhou LL; Li YA; Li WY; Wang S; Song C; Dong YB
    ACS Nano; 2019 Nov; 13(11):13304-13316. PubMed ID: 31689082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodispersed CuSe Sensitized Covalent Organic Framework Photosensitizer with an Enhanced Photodynamic and Photothermal Effect for Cancer Therapy.
    Hu C; Zhang Z; Liu S; Liu X; Pang M
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23072-23082. PubMed ID: 31252509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Organic Frameworks-Derived Carbon Nanoparticles for Photoacoustic Imaging-Guided Photothermal/Photodynamic Combined Therapy.
    Yang P; Tian Y; Men Y; Guo R; Peng H; Jiang Q; Yang W
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42039-42049. PubMed ID: 30427655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable therapeutic nanoscale covalent organic framework for photodynamic therapy and hypoxia-activated cascade chemotherapy.
    He H; Du L; Xue H; Wu J; Shuai X
    Acta Biomater; 2022 Sep; 149():297-306. PubMed ID: 35811069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of PPIX-Lipo-MnO
    Chudal L; Pandey NK; Phan J; Johnson O; Li X; Chen W
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109979. PubMed ID: 31500001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of metal-organic framework with a photoactive porous-organic polymer for interface enhanced phototherapy.
    Zheng X; Wang L; Guan Y; Pei Q; Jiang J; Xie Z
    Biomaterials; 2020 Mar; 235():119792. PubMed ID: 31972286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Raman tag-bridged core-shell Au@Cu
    He J; Dong J; Hu Y; Li G; Hu Y
    Nanoscale; 2019 Mar; 11(13):6089-6100. PubMed ID: 30869726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanozyme Decorated Metal-Organic Frameworks for Enhanced Photodynamic Therapy.
    Zhang Y; Wang F; Liu C; Wang Z; Kang L; Huang Y; Dong K; Ren J; Qu X
    ACS Nano; 2018 Jan; 12(1):651-661. PubMed ID: 29290107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscaled porphyrinic metal-organic framework for photodynamic/photothermal therapy of tumor.
    Wang S; Chen W; Jiang C; Lu L
    Electrophoresis; 2019 Aug; 40(16-17):2204-2210. PubMed ID: 30953373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The recent progress on metal-organic frameworks for phototherapy.
    Zheng Q; Liu X; Zheng Y; Yeung KWK; Cui Z; Liang Y; Li Z; Zhu S; Wang X; Wu S
    Chem Soc Rev; 2021 Apr; 50(8):5086-5125. PubMed ID: 33634817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dipyridophenazine Ni(II) dithiolene complex as a dual-acting cancer phototherapy agent activatable within the phototherapeutic window.
    Sarkar T; Sahoo S; Neekhra S; Paul M; Biswas S; Babu BN; Srivastava R; Hussain A
    Eur J Med Chem; 2023 Dec; 261():115816. PubMed ID: 37717381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX.
    Khaing Oo MK; Yang Y; Hu Y; Gomez M; Du H; Wang H
    ACS Nano; 2012 Mar; 6(3):1939-47. PubMed ID: 22385214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of LaF
    Tavakkoli F; Zahedifar M; Sadeghi E
    Photodiagnosis Photodyn Ther; 2018 Mar; 21():306-311. PubMed ID: 29331661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation.
    Vankayala R; Huang YK; Kalluru P; Chiang CS; Hwang KC
    Small; 2014 Apr; 10(8):1612-22. PubMed ID: 24339243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic and Metal-Organic Nanocomposites for Cascade-Responsive Imaging and Photochemical Synergistic Effects.
    Hu X; Zhu Z; Dong H; Zhu X; Zhu H; Ogawa K; Odani A; Koh K; Chen H
    Inorg Chem; 2020 Apr; 59(7):4617-4625. PubMed ID: 32207928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Photodynamic Therapy Efficacy of Protoporphyrin IX-Loaded Polymeric Micelles Using Erlotinib Pretreatment.
    Yan L; Miller J; Yuan M; Liu JF; Busch TM; Tsourkas A; Cheng Z
    Biomacromolecules; 2017 Jun; 18(6):1836-1844. PubMed ID: 28437090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A MnO
    Zhu D; Wang B; Zhu XH; Zhu HL; Ren SZ
    Nanomedicine; 2021 Oct; 37():102440. PubMed ID: 34256062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.