These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

673 related articles for article (PubMed ID: 31390040)

  • 1. Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support.
    Banerjee I; Sofela M; Yang J; Chen JH; Shah NH; Ball R; Mushlin AI; Desai M; Bledsoe J; Amrhein T; Rubin DL; Zamanian R; Lungren MP
    JAMA Netw Open; 2019 Aug; 2(8):e198719. PubMed ID: 31390040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Massive external validation of a machine learning algorithm to predict pulmonary embolism in hospitalized patients.
    Shen J; Casie Chetty S; Shokouhi S; Maharjan J; Chuba Y; Calvert J; Mao Q
    Thromb Res; 2022 Aug; 216():14-21. PubMed ID: 35679633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of a Natural Language Processing Model to Identify Low-Risk Pulmonary Embolism in Real Time to Facilitate Safe Outpatient Management.
    Amin KD; Weissler EH; Ratliff W; Sullivan AE; Holder TA; Bury C; Francis S; Theiling BJ; Hintze B; Gao M; Nichols M; Balu S; Jones WS; Sendak M
    Ann Emerg Med; 2024 Aug; 84(2):118-127. PubMed ID: 38441514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection.
    Huang SC; Pareek A; Zamanian R; Banerjee I; Lungren MP
    Sci Rep; 2020 Dec; 10(1):22147. PubMed ID: 33335111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications.
    Xue B; Li D; Lu C; King CR; Wildes T; Avidan MS; Kannampallil T; Abraham J
    JAMA Netw Open; 2021 Mar; 4(3):e212240. PubMed ID: 33783520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Patients With Suspected Acute Pulmonary Embolism: Best Practice Advice From the Clinical Guidelines Committee of the American College of Physicians.
    Raja AS; Greenberg JO; Qaseem A; Denberg TD; Fitterman N; Schuur JD;
    Ann Intern Med; 2015 Nov; 163(9):701-11. PubMed ID: 26414967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospective and External Evaluation of a Machine Learning Model to Predict In-Hospital Mortality of Adults at Time of Admission.
    Brajer N; Cozzi B; Gao M; Nichols M; Revoir M; Balu S; Futoma J; Bae J; Setji N; Hernandez A; Sendak M
    JAMA Netw Open; 2020 Feb; 3(2):e1920733. PubMed ID: 32031645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of 4 clinical decision rules in the diagnostic management of acute pulmonary embolism: a prospective cohort study.
    Douma RA; Mos IC; Erkens PM; Nizet TA; Durian MF; Hovens MM; van Houten AA; Hofstee HM; Klok FA; ten Cate H; Ullmann EF; Büller HR; Kamphuisen PW; Huisman MV;
    Ann Intern Med; 2011 Jun; 154(11):709-18. PubMed ID: 21646554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positive Pulmonary Computed Tomography Angiography in Patients with Suspected Acute Pulmonary Embolism: Clinical Prediction Rules, Thromboembolic Risk Factors, and Implications for Appropriate Use.
    Vongchaiudomchoke T; Boonyasirinant T
    J Med Assoc Thai; 2016 Jan; 99(1):25-33. PubMed ID: 27455821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embedded Clinical Decision Support in Electronic Health Record Decreases Use of High-cost Imaging in the Emergency Department: EmbED study.
    Bookman K; West D; Ginde A; Wiler J; McIntyre R; Hammes A; Carlson N; Steinbruner D; Solley M; Zane R
    Acad Emerg Med; 2017 Jul; 24(7):839-845. PubMed ID: 28391603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of patient location on the performance of clinical models to predict pulmonary embolism.
    Ollenberger GP; Worsley DF
    Thromb Res; 2006; 118(6):685-90. PubMed ID: 16380153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Electronic Health Record-Based Prediction Models for 30-Day Readmission Risk Among Patients Hospitalized for Acute Myocardial Infarction.
    Matheny ME; Ricket I; Goodrich CA; Shah RU; Stabler ME; Perkins AM; Dorn C; Denton J; Bray BE; Gouripeddi R; Higgins J; Chapman WW; MacKenzie TA; Brown JR
    JAMA Netw Open; 2021 Jan; 4(1):e2035782. PubMed ID: 33512518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulmonary Embolism in Acute Asthma Exacerbation: Clinical Characteristics, Prediction Model and Hospital Outcomes.
    Alzghoul BN; Reddy R; Chizinga M; Innabi A; Zou B; Papierniak ES; Faruqi I
    Lung; 2020 Aug; 198(4):661-669. PubMed ID: 32424799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and Validation of a Machine Learning Model to Identify Patients Before Surgery at High Risk for Postoperative Adverse Events.
    Mahajan A; Esper S; Oo TH; McKibben J; Garver M; Artman J; Klahre C; Ryan J; Sadhasivam S; Holder-Murray J; Marroquin OC
    JAMA Netw Open; 2023 Jul; 6(7):e2322285. PubMed ID: 37418262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.
    Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A
    Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient management of pulmonary embolism diagnosis using a two-step interconnected machine learning model based on electronic health records data.
    Laffafchi S; Ebrahimi A; Kafan S
    Health Inf Sci Syst; 2024 Dec; 12(1):17. PubMed ID: 38464464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of automated machine learning models and feature engineering for diagnosis of equivocal appendicitis using clinical and computed tomography findings.
    An J; Kim IS; Kim KJ; Park JH; Kang H; Kim HJ; Kim YS; Ahn JH
    Sci Rep; 2024 Sep; 14(1):22658. PubMed ID: 39349512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical utility of clinical prediction rules for suspected acute pulmonary embolism in a large academic institution.
    Moores LK; Collen JF; Woods KM; Shorr AF
    Thromb Res; 2004; 113(1):1-6. PubMed ID: 15081559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early identification of patients admitted to hospital for covid-19 at risk of clinical deterioration: model development and multisite external validation study.
    Kamran F; Tang S; Otles E; McEvoy DS; Saleh SN; Gong J; Li BY; Dutta S; Liu X; Medford RJ; Valley TS; West LR; Singh K; Blumberg S; Donnelly JP; Shenoy ES; Ayanian JZ; Nallamothu BK; Sjoding MW; Wiens J
    BMJ; 2022 Feb; 376():e068576. PubMed ID: 35177406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.