These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 31390181)
1. Impact of Titanium Dioxide Surface Defects on the Interfacial Composition and Energetics of Evaporated Perovskite Active Layers. Shallcross RC; Olthof S; Meerholz K; Armstrong NR ACS Appl Mater Interfaces; 2019 Sep; 11(35):32500-32508. PubMed ID: 31390181 [TBL] [Abstract][Full Text] [Related]
2. Unraveling the Charge Extraction Mechanism of Perovskite Solar Cells Fabricated with Two-Step Spin Coating: Interfacial Energetics between Methylammonium Lead Iodide and C Shin D; Kang D; Jeong J; Park S; Kim M; Lee H; Yi Y J Phys Chem Lett; 2017 Nov; 8(21):5423-5429. PubMed ID: 29057656 [TBL] [Abstract][Full Text] [Related]
3. Methylammonium Compensation Effects in MAPbI Kim G; Kwon N; Lee D; Kim M; Kim M; Lee Y; Kim W; Hyeon D; Kim B; Jeong MS; Hong J; Yang J ACS Appl Mater Interfaces; 2022 Feb; 14(4):5203-5210. PubMed ID: 35050584 [TBL] [Abstract][Full Text] [Related]
4. Interfacial Engineering of Perovskite Solar Cells with Evaporated PbI Li Y; Li W; Xu Y; Li R; Yu T; Lin Q ACS Appl Mater Interfaces; 2021 Nov; 13(44):53282-53288. PubMed ID: 34702034 [TBL] [Abstract][Full Text] [Related]
5. Over 20% Efficiency in Methylammonium Lead Iodide Perovskite Solar Cells with Enhanced Stability via "in Situ Solidification" of the TiO Li Y; Hoye RLZ; Gao HH; Yan L; Zhang X; Zhou Y; MacManus-Driscoll JL; Gan J ACS Appl Mater Interfaces; 2020 Feb; 12(6):7135-7143. PubMed ID: 31961122 [TBL] [Abstract][Full Text] [Related]
6. Cesium Acetate-Induced Interfacial Compositional Change and Graded Band Level in MAPbI Jena AK; Ishii A; Guo Z; Kamarudin MA; Hayase S; Miyasaka T ACS Appl Mater Interfaces; 2020 Jul; 12(30):33631-33637. PubMed ID: 32628004 [TBL] [Abstract][Full Text] [Related]
7. Co-Evaporated p-i-n Perovskite Solar Cells beyond 20% Efficiency: Impact of Substrate Temperature and Hole-Transport Layer. Roß M; Gil-Escrig L; Al-Ashouri A; Tockhorn P; Jošt M; Rech B; Albrecht S ACS Appl Mater Interfaces; 2020 Sep; 12(35):39261-39272. PubMed ID: 32805961 [TBL] [Abstract][Full Text] [Related]
8. Interfacial Modification of Perovskite Solar Cells Using an Ultrathin MAI Layer Leads to Enhanced Energy Level Alignment, Efficiencies, and Reproducibility. Hawash Z; Raga SR; Son DY; Ono LK; Park NG; Qi Y J Phys Chem Lett; 2017 Sep; 8(17):3947-3953. PubMed ID: 28767259 [TBL] [Abstract][Full Text] [Related]
9. 1,10-Phenanthroline as an Efficient Bifunctional Passivating Agent for MAPbI Buyruk A; Blätte D; Günther M; Scheel MA; Hartmann NF; Döblinger M; Weis A; Hartschuh A; Müller-Buschbaum P; Bein T; Ameri T ACS Appl Mater Interfaces; 2021 Jul; 13(28):32894-32905. PubMed ID: 34240843 [TBL] [Abstract][Full Text] [Related]
10. Evaporation of Methylammonium Iodide in Thermal Deposition of MAPbI Wang K; Ecker B; Huang J; Gao Y Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684973 [TBL] [Abstract][Full Text] [Related]
11. Bridging Effects of Sulfur Anions at Titanium Oxide and Perovskite Interfaces on Interfacial Defect Passivation and Performance Enhancement of Perovskite Solar Cells. Liu Y; Sun H; Liao F; Li G; Zhao C; Cui C; Mei J; Zhao Y ACS Omega; 2021 Dec; 6(50):34485-34493. PubMed ID: 34963933 [TBL] [Abstract][Full Text] [Related]
12. Surface Properties of CH3NH3PbI3 for Perovskite Solar Cells. Haruyama J; Sodeyama K; Han L; Tateyama Y Acc Chem Res; 2016 Mar; 49(3):554-61. PubMed ID: 26901120 [TBL] [Abstract][Full Text] [Related]
13. Growth mechanism of CH Kim BS; Han Y; Kim JJ Nanoscale Adv; 2020 Sep; 2(9):3906-3911. PubMed ID: 36132785 [TBL] [Abstract][Full Text] [Related]
15. A Biopolymer Heparin Sodium Interlayer Anchoring TiO You S; Wang H; Bi S; Zhou J; Qin L; Qiu X; Zhao Z; Xu Y; Zhang Y; Shi X; Zhou H; Tang Z Adv Mater; 2018 May; 30(22):e1706924. PubMed ID: 29667243 [TBL] [Abstract][Full Text] [Related]
16. Processing Dependent Influence of the Hole Transport Layer Ionization Energy on Methylammonium Lead Iodide Perovskite Photovoltaics. Park SM; Mazza SM; Liang Z; Abtahi A; Boehm AM; Parkin SR; Anthony JE; Graham KR ACS Appl Mater Interfaces; 2018 May; 10(18):15548-15557. PubMed ID: 29672012 [TBL] [Abstract][Full Text] [Related]
17. The Effect of Methylammonium Iodide on the Supersaturation and Interfacial Energy of the Crystallization of Methylammonium Lead Triiodide Single Crystals. Li B; Isikgor FH; Coskun H; Ouyang J Angew Chem Int Ed Engl; 2017 Dec; 56(50):16073-16076. PubMed ID: 29071807 [TBL] [Abstract][Full Text] [Related]
18. In Situ Observation of Crystallization of Methylammonium Lead Iodide Perovskite from Microdroplets. Li Y; Zhao Z; Lin F; Cao X; Cui X; Wei J Small; 2017 Jul; 13(26):. PubMed ID: 28514058 [TBL] [Abstract][Full Text] [Related]
19. Formation and evolution of the unexpected PbI2 phase at the interface during the growth of evaporated perovskite films. Xu H; Wu Y; Cui J; Ni C; Xu F; Cai J; Hong F; Fang Z; Wang W; Zhu J; Wang L; Xu R; Xu F Phys Chem Chem Phys; 2016 Jul; 18(27):18607-13. PubMed ID: 27346149 [TBL] [Abstract][Full Text] [Related]
20. Efficient Bifacial Passivation with Crosslinked Thioctic Acid for High-Performance Methylammonium Lead Iodide Perovskite Solar Cells. Chen H; Liu T; Zhou P; Li S; Ren J; He H; Wang J; Wang N; Guo S Adv Mater; 2020 Feb; 32(6):e1905661. PubMed ID: 31851401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]