These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31390187)

  • 21. Surface Functionalization of Metal Nanoparticles by Conjugated Metal-Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer.
    Hu P; Chen L; Kang X; Chen S
    Acc Chem Res; 2016; 49(10):2251-2260. PubMed ID: 27690382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembly of conjugated oligomers and polymers at the interface: structure and properties.
    Xu L; Yang L; Lei S
    Nanoscale; 2012 Aug; 4(15):4399-415. PubMed ID: 22710438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals.
    Sawamura M; Kawai K; Matsuo Y; Kanie K; Kato T; Nakamura E
    Nature; 2002 Oct; 419(6908):702-5. PubMed ID: 12384693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile access to pyridinium-based bent aromatic amphiphiles: nonionic surface modification of nanocarbons in water.
    Catti L; Aoyama S; Yoshizawa M
    Beilstein J Org Chem; 2024; 20():32-40. PubMed ID: 38230357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface Water as a Mediator and Reporter of Adhesion at Aqueous Interfaces.
    Jarisz T; Roy S; Hore DK
    Acc Chem Res; 2018 Sep; 51(9):2287-2295. PubMed ID: 30152686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supramolecular assemblies of a new series of gemini-type schiff base amphiphiles at the air/water interface: in situ coordination, interfacial nanoarchitectures, and spacer effect.
    Jiao T; Liu M
    Langmuir; 2006 May; 22(11):5005-12. PubMed ID: 16700587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications.
    Ramanathan M; Shrestha LK; Mori T; Ji Q; Hill JP; Ariga K
    Phys Chem Chem Phys; 2013 Jul; 15(26):10580-611. PubMed ID: 23639971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solution conformational features and interfacial properties of an intrinsically disordered peptide coupled to alkyl chains: a new class of peptide amphiphiles.
    Accardo A; Leone M; Tesauro D; Aufiero R; Bénarouche A; Cavalier JF; Longhi S; Carriere F; Rossi F
    Mol Biosyst; 2013 Jun; 9(6):1401-10. PubMed ID: 23483086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rigid lipid membranes and nanometer clefts: motifs for the creation of molecular landscapes.
    Li G; Fudickar W; Skupin M; Klyszcz A; Draeger C; Lauer M; Fuhrhop JH
    Angew Chem Int Ed Engl; 2002 Jun; 41(11):1828-52. PubMed ID: 19750613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coordination-Driven Syntheses of Compact Supramolecular Metallacycles toward Extended Metallo-organic Stacked Supramolecular Assemblies.
    Lescop C
    Acc Chem Res; 2017 Apr; 50(4):885-894. PubMed ID: 28263559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Supramolecular Assembly of Peptide Amphiphiles.
    Hendricks MP; Sato K; Palmer LC; Stupp SI
    Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionic Complexes of Metal Oxide Clusters for Versatile Self-Assemblies.
    Li B; Li W; Li H; Wu L
    Acc Chem Res; 2017 Jun; 50(6):1391-1399. PubMed ID: 28508633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Melatonin-directed micellization: a case for tryptophan metabolites and their classical bioisosteres as templates for the self-assembly of bipyridinium-based supramolecular amphiphiles in water.
    Wang Z; Cui H; Sun Z; Roch LM; Goldner AN; Nour HF; Sue AC; Baldridge KK; Olson MA
    Soft Matter; 2018 Apr; 14(15):2893-2905. PubMed ID: 29589034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and characterization of amphiphilic fullerenes and their Langmuir-Blodgett films.
    Gao Y; Tang Z; Watkins E; Majewski J; Wang HL
    Langmuir; 2005 Feb; 21(4):1416-23. PubMed ID: 15697289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aqueous self-assembly of chromophore-conjugated amphiphiles.
    Molla MR; Ghosh S
    Phys Chem Chem Phys; 2014 Dec; 16(48):26672-83. PubMed ID: 25375094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface.
    Mali KS; Adisoejoso J; Ghijsens E; De Cat I; De Feyter S
    Acc Chem Res; 2012 Aug; 45(8):1309-20. PubMed ID: 22612471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical Properties of Solidifying Assemblies of Nanoparticle Surfactants at the Oil-Water Interface.
    Toor A; Forth J; Bochner de Araujo S; Merola MC; Jiang Y; Liu X; Chai Y; Hou H; Ashby PD; Fuller GG; Russell TP
    Langmuir; 2019 Oct; 35(41):13340-13350. PubMed ID: 31536356
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of addition of dendritic C60 amphiphiles on the structure of cationic surfactant solutions.
    Li H; Liu C; Hao J; Hirsch A
    J Colloid Interface Sci; 2008 Apr; 320(1):307-14. PubMed ID: 18241876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.