These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31390534)

  • 21. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements.
    Zauel R; Yeni YN; Bay BK; Dong XN; Fyhrie DP
    J Biomech Eng; 2006 Feb; 128(1):1-6. PubMed ID: 16532610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Baby steps towards linking calcaneal trabecular bone ontogeny and the development of bipedal human gait.
    Saers JPP; Ryan TM; Stock JT
    J Anat; 2020 Mar; 236(3):474-492. PubMed ID: 31725189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Idealized conductance: A new method to evaluate stiffness of trabecular bone.
    Feng C; Yao J; Wang L; Zhang X; Fan Y
    Int J Numer Method Biomed Eng; 2021 Mar; 37(3):e3425. PubMed ID: 33289331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.
    Daszkiewicz K; Maquer G; Zysset PK
    Biomech Model Mechanobiol; 2017 Jun; 16(3):731-742. PubMed ID: 27785611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT.
    Alomari AH; Wille ML; Langton CM
    Bone; 2018 Feb; 107():145-153. PubMed ID: 29198979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone.
    Lambers FM; Bouman AR; Tkachenko EV; Keaveny TM; Hernandez CJ
    J Biomech; 2014 Nov; 47(15):3605-12. PubMed ID: 25458150
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties.
    Majumdar S; Kothari M; Augat P; Newitt DC; Link TM; Lin JC; Lang T; Lu Y; Genant HK
    Bone; 1998 May; 22(5):445-54. PubMed ID: 9600777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trabecular bone functional adaptation and sexual dimorphism in the human foot.
    Saers JPP; Ryan TM; Stock JT
    Am J Phys Anthropol; 2019 Jan; 168(1):154-169. PubMed ID: 30462351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of orthogonal overload on human vertebral trabecular bone mechanical properties.
    Badiei A; Bottema MJ; Fazzalari NL
    J Bone Miner Res; 2007 Nov; 22(11):1690-9. PubMed ID: 17620053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties.
    Yeni YN; Kim DG; Divine GW; Johnson EM; Cody DD
    Bone; 2009 Jan; 44(1):130-6. PubMed ID: 18848654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterising variability and regional correlations of microstructure and mechanical competence of human tibial trabecular bone: An in-vivo HR-pQCT study.
    Du J; Brooke-Wavell K; Paggiosi MA; Hartley C; Walsh JS; Silberschmidt VV; Li S
    Bone; 2019 Apr; 121():139-148. PubMed ID: 30658093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trabecular bone adaptation with an orthotropic material model.
    Miller Z; Fuchs MB; Arcan M
    J Biomech; 2002 Feb; 35(2):247-56. PubMed ID: 11784543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Trabecular Bone on Peri-Implant Stress and Strain Based on Micro-CT Finite Element Modeling of Beagle Dog.
    Liao SH; Zhu XH; Xie J; Sohodeb VK; Ding X
    Biomed Res Int; 2016; 2016():3926941. PubMed ID: 27403424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Experimental and Computational Investigation of Bone Formation in Mechanically Loaded Trabecular Bone Explants.
    Birmingham E; Niebur GL; McNamara LM; McHugh PE
    Ann Biomed Eng; 2016 Apr; 44(4):1191-203. PubMed ID: 26208616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Network models for characterization of trabecular bone.
    Mondal A; Nguyen C; Ma X; Elbanna AE; Carlson JM
    Phys Rev E; 2019 Apr; 99(4-1):042406. PubMed ID: 31108725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models.
    Adachi T; Tsubota K; Tomita Y; Hollister SJ
    J Biomech Eng; 2001 Oct; 123(5):403-9. PubMed ID: 11601724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uniaxial yield strains for bovine trabecular bone are isotropic and asymmetric.
    Chang WC; Christensen TM; Pinilla TP; Keaveny TM
    J Orthop Res; 1999 Jul; 17(4):582-5. PubMed ID: 10459766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anisotropy and inhomogeneity of the trabecular structure can describe the mechanical strength of osteoarthritic cancellous bone.
    Tassani S; Ohman C; Baleani M; Baruffaldi F; Viceconti M
    J Biomech; 2010 Apr; 43(6):1160-6. PubMed ID: 20056226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of processing parameters on mechanical properties of a 3D-printed trabecular bone microstructure.
    Amini M; Reisinger A; Pahr DH
    J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):38-47. PubMed ID: 30893513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.