These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 3139063)
1. Plasmid-encoded functions of ropy lactic acid streptococcal strains from Scandinavian fermented milk. Neve H; Geis A; Teuber M Biochimie; 1988 Mar; 70(3):437-42. PubMed ID: 3139063 [TBL] [Abstract][Full Text] [Related]
2. Scanning electron microscopic and texture studies on characteristic consistency of Nordic ropy sour milk. Toba T; Nakajima H; Tobitani A; Adachi S Int J Food Microbiol; 1990 Dec; 11(3-4):313-20. PubMed ID: 2126446 [TBL] [Abstract][Full Text] [Related]
3. Partial characterization of a new C3-type capsule-dissolving phage of Streptococcus cremoris. Saxelin ML; Nurmiaho EL; Korhola MP; Sundman V Can J Microbiol; 1979 Oct; 25(10):1182-7. PubMed ID: 119574 [TBL] [Abstract][Full Text] [Related]
4. Conjugal transfer and characterization of bacteriocin plasmids in group N (lactic acid) streptococci. Neve H; Geis A; Teuber M J Bacteriol; 1984 Mar; 157(3):833-8. PubMed ID: 6321437 [TBL] [Abstract][Full Text] [Related]
5. Short communication: Presence of Lactococcus and lactococcal exopolysaccharide operons on the leaves of Pinguicula vulgaris supports the traditional source of bacteria present in Scandinavian ropy fermented milk. Porcellato D; Tranvåg M; Narvhus J J Dairy Sci; 2016 Sep; 99(9):7049-7052. PubMed ID: 27423953 [TBL] [Abstract][Full Text] [Related]
6. Cloning and expression of a Streptococcus cremoris proteinase in Bacillus subtilis and Streptococcus lactis. Kok J; van Dijl JM; van der Vossen JM; Venema G Appl Environ Microbiol; 1985 Jul; 50(1):94-101. PubMed ID: 2992377 [TBL] [Abstract][Full Text] [Related]
7. Restriction and modification activities from Streptococcus lactis ME2 are encoded by a self-transmissible plasmid, pTN20, that forms cointegrates during mobilization of lactose-fermenting ability. Higgins DL; Sanozky-Dawes RB; Klaenhammer TR J Bacteriol; 1988 Aug; 170(8):3435-42. PubMed ID: 2841286 [TBL] [Abstract][Full Text] [Related]
8. Influence of heat impact in reconstituted skim milk on the properties of yoghurt fermented by ropy or non-ropy starter cultures. Lorenzen PC; Ebert Y; Clawin-Rädecker I; Schlimme E Nahrung; 2003 Oct; 47(5):349-53. PubMed ID: 14609093 [TBL] [Abstract][Full Text] [Related]
9. Capsular polysaccharide of a slime-forming Lactococcus lactis ssp. cremoris LAPT 3001 isolated from Swedish fermented milk 'långfil'. Toba T; Kotani T; Adachi S Int J Food Microbiol; 1991 Feb; 12(2-3):167-71. PubMed ID: 1904758 [TBL] [Abstract][Full Text] [Related]
10. Comparative genome analysis of Streptococcus infantarius subsp. infantarius CJ18, an African fermented camel milk isolate with adaptations to dairy environment. Jans C; Follador R; Hochstrasser M; Lacroix C; Meile L; Stevens MJ BMC Genomics; 2013 Mar; 14():200. PubMed ID: 23521820 [TBL] [Abstract][Full Text] [Related]
11. Identification of cell wall antigens associated with a large conjugative plasmid encoding phage resistance and lactose fermentation ability in lactic streptococci. Dunny GM; Krug DA; Pan CL; Ledford RA Biochimie; 1988 Mar; 70(3):443-50. PubMed ID: 3139064 [TBL] [Abstract][Full Text] [Related]
12. Identification of lactic acid bacteria in Taiwanese ropy fermented milk and evaluation of their microbial ecology in bovine and caprine milk. Wang SY; Chen HC; Dai TY; Huang IN; Liu JR; Chen MJ J Dairy Sci; 2011 Feb; 94(2):623-35. PubMed ID: 21257031 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of plasmid DNA in Streptococcus cremoris. Larsen LD; McKay LL Appl Environ Microbiol; 1978 Dec; 36(6):944-52. PubMed ID: 736546 [TBL] [Abstract][Full Text] [Related]
14. Molecular properties of Streptococcus thermophilus plasmid pER35 encoding a restriction modification system. Solow BT; Somkuti GA Curr Microbiol; 2001 Feb; 42(2):122-8. PubMed ID: 11136134 [TBL] [Abstract][Full Text] [Related]
15. Distribution of plasmid-borne stress protein genes in Streptococcus thermophilus and other lactic acid bacteria. Somkuti GA; Steinberg DH Curr Microbiol; 1999 Jan; 38(1):43-7. PubMed ID: 9841781 [TBL] [Abstract][Full Text] [Related]
16. Characterization of exopolysaccharide-producing lactic acid bacteria from Taiwanese ropy fermented milk and their application in low-fat fermented milk. Ng KS; Chang YC; Chen YP; Lo YH; Wang SY; Chen MJ Anim Biosci; 2022 Feb; 35(2):281-289. PubMed ID: 34530518 [TBL] [Abstract][Full Text] [Related]
17. Acquisition through horizontal gene transfer of plasmid pSMA198 by Streptococcus macedonicus ACA-DC 198 points towards the dairy origin of the species. Papadimitriou K; Anastasiou R; Maistrou E; Plakas T; Papandreou NC; Hamodrakas SJ; Ferreira S; Supply P; Renault P; Pot B; Tsakalidou E PLoS One; 2015; 10(1):e0116337. PubMed ID: 25584532 [TBL] [Abstract][Full Text] [Related]
18. Effect of fermentation temperature on the properties of exopolysaccharides and the acid gelation behavior for milk fermented by Streptococcus thermophilus strains DGCC7785 and St-143. Khanal SN; Lucey JA J Dairy Sci; 2018 May; 101(5):3799-3811. PubMed ID: 29501333 [TBL] [Abstract][Full Text] [Related]
19. Transposition of the Streptococcus lactis ssp. lactis Z270 lactose plasmid to pVA797: demonstration of an insertion sequence and its relationship to an inverted repeat sequence isolated by self-annealing. Novel M; Huang DC; Novel G Biochimie; 1988 Apr; 70(4):543-51. PubMed ID: 2844300 [TBL] [Abstract][Full Text] [Related]
20. [Fragmentation of the lactose-protease plasmid in lactose-negative derivatives of Streptococcus lactis and S. lactis ssp. diacetylactis]. Ramos P; Novel M; Lemosquet M; Novel G Ann Microbiol (Paris); 1983; 134B(3):387-99. PubMed ID: 6326641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]