These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 3139073)
1. Utilization of dipeptides by Lactococcus lactis ssp. cremoris. van Boven A; Konings WN Biochimie; 1988 Apr; 70(4):535-42. PubMed ID: 3139073 [TBL] [Abstract][Full Text] [Related]
2. Relationship between utilization of proline and proline-containing peptides and growth of Lactococcus lactis. Smid EJ; Konings WN J Bacteriol; 1990 Sep; 172(9):5286-92. PubMed ID: 2118509 [TBL] [Abstract][Full Text] [Related]
3. Peptide uptake is essential for growth of Lactococcus lactis on the milk protein casein. Smid EJ; Plapp R; Konings WN J Bacteriol; 1989 Nov; 171(11):6135-40. PubMed ID: 2509429 [TBL] [Abstract][Full Text] [Related]
4. Influence of starters on chemical, biochemical, and sensory changes in Turkish White-brined cheese during ripening. Hayaloglu AA; Guven M; Fox PF; McSweeney PL J Dairy Sci; 2005 Oct; 88(10):3460-74. PubMed ID: 16162519 [TBL] [Abstract][Full Text] [Related]
5. Peptide utilization by Lactococcus lactis and Leuconostoc mesenteroides. Foucaud C; Hemme D; Desmazeaud M Lett Appl Microbiol; 2001 Jan; 32(1):20-5. PubMed ID: 11169036 [TBL] [Abstract][Full Text] [Related]
6. Peptide utilization by group N streptococci. Law BA J Gen Microbiol; 1978 Mar; 105(1):113-8. PubMed ID: 416171 [TBL] [Abstract][Full Text] [Related]
7. Genetic and functional characterization of dpp genes encoding a dipeptide transport system in Lactococcus lactis. Sanz Y; Lanfermeijer FC; Renault P; Bolotin A; Konings WN; Poolman B Arch Microbiol; 2001 May; 175(5):334-43. PubMed ID: 11409543 [TBL] [Abstract][Full Text] [Related]
8. The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes beta-casein into more than one hundred different oligopeptides. Juillard V; Laan H; Kunji ER; Jeronimus-Stratingh CM; Bruins AP; Konings WN J Bacteriol; 1995 Jun; 177(12):3472-8. PubMed ID: 7768856 [TBL] [Abstract][Full Text] [Related]
9. Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses. Kim WS; Ren J; Dunn NW FEMS Microbiol Lett; 1999 Feb; 171(1):57-65. PubMed ID: 9987842 [TBL] [Abstract][Full Text] [Related]
10. Mechanism and energetics of dipeptide transport in membrane vesicles of Lactococcus lactis. Smid EJ; Driessen AJ; Konings WN J Bacteriol; 1989 Jan; 171(1):292-8. PubMed ID: 2492499 [TBL] [Abstract][Full Text] [Related]
11. Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis. Guédon E; Serror P; Ehrlich SD; Renault P; Delorme C Mol Microbiol; 2001 Jun; 40(5):1227-39. PubMed ID: 11401725 [TBL] [Abstract][Full Text] [Related]
12. Production of menaquinones by lactic acid bacteria. Morishita T; Tamura N; Makino T; Kudo S J Dairy Sci; 1999 Sep; 82(9):1897-903. PubMed ID: 10509247 [TBL] [Abstract][Full Text] [Related]
13. Loss of phage resistance encoded by plasmid pSK112 in chemostat cultures of Lactococcus lactis ssp. cremoris SK110. Sterkenburg A; Van Leeuwen P; Wouters JT Biochimie; 1988 Mar; 70(3):451-6. PubMed ID: 3139065 [TBL] [Abstract][Full Text] [Related]
14. Utilization of (15)N-labelled yeast hydrolysate in Lactococcus lactis IL1403 culture indicates co-consumption of peptide-bound and free amino acids with simultaneous efflux of free amino acids. Kevvai K; Kütt ML; Nisamedtinov I; Paalme T Antonie Van Leeuwenhoek; 2014 Mar; 105(3):511-22. PubMed ID: 24389760 [TBL] [Abstract][Full Text] [Related]
15. A fuzzy logic-based model for the multistage high-pressure inactivation of Lactococcus lactis ssp. cremoris MG 1363. Kilimann KV; Hartmann C; Delgado A; Vogel RF; Gänzle MG Int J Food Microbiol; 2005 Jan; 98(1):89-105. PubMed ID: 15617804 [TBL] [Abstract][Full Text] [Related]
16. Expression of ropy and mucoid phenotypes in Lactococcus lactis. Dierksen KP; Sandine WE; Trempy JE J Dairy Sci; 1997 Aug; 80(8):1528-36. PubMed ID: 9276790 [TBL] [Abstract][Full Text] [Related]
17. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH. Mercade M; Cocaign-Bousquet M; Loubière P J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685 [TBL] [Abstract][Full Text] [Related]
18. Transport of beta-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. Kunji ER; Hagting A; De Vries CJ; Juillard V; Haandrikman AJ; Poolman B; Konings WN J Biol Chem; 1995 Jan; 270(4):1569-74. PubMed ID: 7829486 [TBL] [Abstract][Full Text] [Related]
19. Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. Poolman B; Konings WN J Bacteriol; 1988 Feb; 170(2):700-7. PubMed ID: 3123462 [TBL] [Abstract][Full Text] [Related]
20. The contribution of lactococcal starter proteinases to proteolysis in cheddar cheese. Law J; Fitzgerald GF; Uniacke-Lowe T; Daly C; Fox PF J Dairy Sci; 1993 Sep; 76(9):2455-67. PubMed ID: 8227650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]