These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 31390733)
1. 3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations. Ma C; Jiang L; Wang Y; Gang F; Xu N; Li T; Liu Z; Chi Y; Wang X; Zhao L; Feng Q; Sun X Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31390733 [TBL] [Abstract][Full Text] [Related]
3. Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole:PSS Hydrogels for Tissue Engineering. Distler T; Polley C; Shi F; Schneidereit D; Ashton MD; Friedrich O; Kolb JF; Hardy JG; Detsch R; Seitz H; Boccaccini AR Adv Healthc Mater; 2021 May; 10(9):e2001876. PubMed ID: 33711199 [TBL] [Abstract][Full Text] [Related]
4. Aligned and electrically conductive 3D collagen scaffolds for skeletal muscle tissue engineering. Basurto IM; Mora MT; Gardner GM; Christ GJ; Caliari SR Biomater Sci; 2021 Jun; 9(11):4040-4053. PubMed ID: 33899845 [TBL] [Abstract][Full Text] [Related]
5. 3D-Printed PCL/PPy Conductive Scaffolds as Three-Dimensional Porous Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Vijayavenkataraman S; Kannan S; Cao T; Fuh JYH; Sriram G; Lu WF Front Bioeng Biotechnol; 2019; 7():266. PubMed ID: 31750293 [TBL] [Abstract][Full Text] [Related]
6. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related]
7. [Preparation and properties of fiber-based conductive composite scaffolds for peripheral nerve regeneration]. Dai W; Shi J; Liu S; Xu Z; Shi Y; Zhao Y; Yang Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Mar; 33(3):356-362. PubMed ID: 30874396 [TBL] [Abstract][Full Text] [Related]
8. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering. Maharjan B; Kaliannagounder VK; Jang SR; Awasthi GP; Bhattarai DP; Choukrani G; Park CH; Kim CS Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111056. PubMed ID: 32994008 [TBL] [Abstract][Full Text] [Related]
9. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review. Distler T; Boccaccini AR Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385 [TBL] [Abstract][Full Text] [Related]
10. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization. Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301 [TBL] [Abstract][Full Text] [Related]
11. 3D conductive nanocomposite scaffold for bone tissue engineering. Shahini A; Yazdimamaghani M; Walker KJ; Eastman MA; Hatami-Marbini H; Smith BJ; Ricci JL; Madihally SV; Vashaee D; Tayebi L Int J Nanomedicine; 2014; 9():167-81. PubMed ID: 24399874 [TBL] [Abstract][Full Text] [Related]
13. Surface-Modified Polypyrrole-Coated PLCL and PLGA Nerve Guide Conduits Fabricated by 3D Printing and Electrospinning. Namhongsa M; Daranarong D; Sriyai M; Molloy R; Ross S; Ross GM; Tuantranont A; Tocharus J; Sivasinprasasn S; Topham PD; Tighe B; Punyodom W Biomacromolecules; 2022 Nov; 23(11):4532-4546. PubMed ID: 36169096 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. Zarei M; Samimi A; Khorram M; Abdi MM; Golestaneh SI Int J Biol Macromol; 2021 Jan; 168():175-186. PubMed ID: 33309657 [TBL] [Abstract][Full Text] [Related]
15. Controlling scaffold conductivity and pore size to direct myogenic cell alignment and differentiation. Basurto IM; Muhammad SA; Gardner GM; Christ GJ; Caliari SR J Biomed Mater Res A; 2022 Oct; 110(10):1681-1694. PubMed ID: 35762455 [TBL] [Abstract][Full Text] [Related]
16. Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole. Alegret N; Dominguez-Alfaro A; González-Domínguez JM; Arnaiz B; Cossío U; Bosi S; Vázquez E; Ramos-Cabrer P; Mecerreyes D; Prato M ACS Appl Mater Interfaces; 2018 Dec; 10(50):43904-43914. PubMed ID: 30475577 [TBL] [Abstract][Full Text] [Related]
17. Electro-conductive 3D printed polycaprolactone/gold nanoparticles nanocomposite scaffolds for myocardial tissue engineering. Ghaziof S; Shojaei S; Mehdikhani M; Khodaei M; Jafari Nodoushan M J Mech Behav Biomed Mater; 2022 Aug; 132():105271. PubMed ID: 35623107 [TBL] [Abstract][Full Text] [Related]
18. Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds. Zhang B; Cristescu R; Chrisey DB; Narayan RJ Int J Bioprint; 2020; 6(1):211. PubMed ID: 32596549 [TBL] [Abstract][Full Text] [Related]
19. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274 [TBL] [Abstract][Full Text] [Related]
20. Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. Zanjanizadeh Ezazi N; Shahbazi MA; Shatalin YV; Nadal E; Mäkilä E; Salonen J; Kemell M; Correia A; Hirvonen J; Santos HA Int J Pharm; 2018 Jan; 536(1):241-250. PubMed ID: 29195917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]