BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 31390781)

  • 1. Retrotransposons in Plant Genomes: Structure, Identification, and Classification through Bioinformatics and Machine Learning.
    Orozco-Arias S; Isaza G; Guyot R
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31390781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A machine learning based framework to identify and classify long terminal repeat retrotransposons.
    Schietgat L; Vens C; Cerri R; Fischer CN; Costa E; Ramon J; Carareto CMA; Blockeel H
    PLoS Comput Biol; 2018 Apr; 14(4):e1006097. PubMed ID: 29684010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes.
    Janicki M; Rooke R; Yang G
    Chromosome Res; 2011 Aug; 19(6):787-808. PubMed ID: 21850457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic curation of LTR retrotransposon libraries from plant genomes through machine learning.
    Orozco-Arias S; Candamil-Cortes MS; Jaimes PA; Valencia-Castrillon E; Tabares-Soto R; Isaza G; Guyot R
    J Integr Bioinform; 2022 Sep; 19(3):. PubMed ID: 35822734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses.
    Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL
    Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. InpactorDB: A Classified Lineage-Level Plant LTR Retrotransposon Reference Library for Free-Alignment Methods Based on Machine Learning.
    Orozco-Arias S; Jaimes PA; Candamil MS; Jiménez-Varón CF; Tabares-Soto R; Isaza G; Guyot R
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33525408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of retrotransposon-derived genetic markers to analyse genomic variability in plants.
    Kalendar R; Amenov A; Daniyarov A
    Funct Plant Biol; 2018 Jan; 46(1):15-29. PubMed ID: 30939255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transposable elements as genetic accelerators of evolution: contribution to genome size, gene regulatory network rewiring and morphological innovation.
    Nishihara H
    Genes Genet Syst; 2020 Jan; 94(6):269-281. PubMed ID: 31932541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Predictive Approach to Infer the Activity and Natural Variation of Retrotransposon Families in Plants.
    Benoit M; Drost HG
    Methods Mol Biol; 2021; 2250():1-14. PubMed ID: 33900588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide variation in nucleotides and retrotransposons in alpine populations of Arabis alpina (Brassicaceae).
    Rogivue A; Choudhury RR; Zoller S; Joost S; Felber F; Kasser M; Parisod C; Gugerli F
    Mol Ecol Resour; 2019 May; 19(3):773-787. PubMed ID: 30636378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A systematic review of the application of machine learning in the detection and classification of transposable elements.
    Orozco-Arias S; Isaza G; Guyot R; Tabares-Soto R
    PeerJ; 2019; 7():e8311. PubMed ID: 31976169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TIR-Learner, a New Ensemble Method for TIR Transposable Element Annotation, Provides Evidence for Abundant New Transposable Elements in the Maize Genome.
    Su W; Gu X; Peterson T
    Mol Plant; 2019 Mar; 12(3):447-460. PubMed ID: 30802553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic re-assessment of the transposable element landscape of the potato genome.
    Zavallo D; Crescente JM; Gantuz M; Leone M; Vanzetti LS; Masuelli RW; Asurmendi S
    Plant Cell Rep; 2020 Sep; 39(9):1161-1174. PubMed ID: 32435866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation.
    Ramakrishnan M; Satish L; Kalendar R; Narayanan M; Kandasamy S; Sharma A; Emamverdian A; Wei Q; Zhou M
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEnest: automated chronological annotation and visualization of nested plant transposable elements.
    Kronmiller BA; Wise RP
    Plant Physiol; 2008 Jan; 146(1):45-59. PubMed ID: 18032588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DPTEdb, an integrative database of transposable elements in dioecious plants.
    Li SF; Zhang GJ; Zhang XJ; Yuan JH; Deng CL; Gu LF; Gao WJ
    Database (Oxford); 2016; 2016():. PubMed ID: 27173524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-evolution of plant LTR-retrotransposons and their host genomes.
    Zhao M; Ma J
    Protein Cell; 2013 Jul; 4(7):493-501. PubMed ID: 23794032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome relationships and LTR-retrotransposon diversity in three cultivated Capsicum L. (Solanaceae) species.
    de Assis R; Baba VY; Cintra LA; Gonçalves LSA; Rodrigues R; Vanzela ALL
    BMC Genomics; 2020 Mar; 21(1):237. PubMed ID: 32183698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of transposable elements provides insights into genome evolution in the genus Camelus.
    Ibrahim MA; Al-Shomrani BM; Simenc M; Alharbi SN; Alqahtani FH; Al-Fageeh MB; Manee MM
    BMC Genomics; 2021 Nov; 22(1):842. PubMed ID: 34800971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes.
    Zhang F; Chen F; Schwarzacher T; Heslop-Harrison JS; Teng N
    Ann Bot; 2023 Feb; 131(1):215-228. PubMed ID: 35639931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.