These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31391002)

  • 1. Genetic variation assessment of stacked-trait transgenic maize via conventional breeding.
    Wang X; Zhang X; Yang J; Liu X; Song Y; Wang Z
    BMC Plant Biol; 2019 Aug; 19(1):346. PubMed ID: 31391002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect on transcriptome and metabolome of stacked transgenic maize containing insecticidal cry and glyphosate tolerance epsps genes.
    Wang XJ; Zhang X; Yang JT; Wang ZX
    Plant J; 2018 Mar; 93(6):1007-1016. PubMed ID: 29356248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of stacking insecticidal cry and herbicide tolerance epsps transgenes on transgenic maize proteome.
    Agapito-Tenfen SZ; Vilperte V; Benevenuto RF; Rover CM; Traavik TI; Nodari RO
    BMC Plant Biol; 2014 Dec; 14():346. PubMed ID: 25490888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stacked Genetically Engineered Trait Products Produced by Conventional Breeding Reflect the Compositional Profiles of Their Component Single Trait Products.
    Bell E; Nakai S; Burzio LA
    J Agric Food Chem; 2018 Jul; 66(29):7794-7804. PubMed ID: 29953223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of stacking breeding on the methylome and transcriptome profile of transgenic rice with glyphosate tolerance.
    Wang X; Niu S; Yang J; Dong Y; Liu X; Jiao Y; Wang Z
    Planta; 2023 Jun; 258(2):34. PubMed ID: 37378818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential subchronic food safety of the stacked trait transgenic maize GH5112E-117C in Sprague-Dawley rats.
    Han S; Zou S; He X; Huang K; Mei X
    Transgenic Res; 2016 Aug; 25(4):453-63. PubMed ID: 26919987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated proteomics and metabolomics analysis of transgenic and gene-stacked maize line seeds.
    Liu W; Zhao H; Miao C; Jin W
    GM Crops Food; 2021 Jan; 12(1):361-375. PubMed ID: 34097556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing agronomic and phenotypic plant characteristics between single and stacked events in soybean, maize, and cotton.
    Jose M; Vertuan H; Soares D; Sordi D; Bellini LF; Kotsubo R; Berger GU
    PLoS One; 2020; 15(4):e0231733. PubMed ID: 32339186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compositional analysis of grain and forage from MON 87427, an inducible male sterile and tissue selective glyphosate-tolerant maize product for hybrid seed production.
    Venkatesh TV; Breeze ML; Liu K; Harrigan GG; Culler AH
    J Agric Food Chem; 2014 Feb; 62(8):1964-73. PubMed ID: 24397242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Transgenic maize plants with low copy number of foreign genes were produced with maize Ubi-1 promoter].
    Xu ZQ; Gong LG; Huang X; Zhang YY; Gao LM
    Sheng Wu Gong Cheng Xue Bao; 2004 Jan; 20(1):120-5. PubMed ID: 16108502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In maize, co-expression of GAT and GR79-EPSPS provides high glyphosate resistance, along with low glyphosate residues.
    Li S; Li P; Li X; Wen N; Wang Y; Lu W; Lin M; Lang Z
    aBIOTECH; 2023 Dec; 4(4):277-290. PubMed ID: 38106436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation.
    Gong CY; Li Q; Yu HT; Wang Z; Wang T
    J Proteome Res; 2012 May; 11(5):3019-29. PubMed ID: 22509807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical method evaluation and discovery of variation within maize varieties in the context of food safety: transcript profiling and metabolomics.
    Zeng W; Hazebroek J; Beatty M; Hayes K; Ponte C; Maxwell C; Zhong CX
    J Agric Food Chem; 2014 Apr; 62(13):2997-3009. PubMed ID: 24564827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of genetic structures on haploid genome-based quantification of genetically modified DNA: theoretical considerations, experimental data in MON 810 maize kernels (Zea mays L.) and some practical applications.
    Zhang D; Corlet A; Fouilloux S
    Transgenic Res; 2008 Jun; 17(3):393-402. PubMed ID: 17638110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Varietal effects of eight paired lines of transgenic Bt maize and near-isogenic non-Bt maize on soil microbial and nematode community structure.
    Griffiths BS; Heckmann LH; Caul S; Thompson J; Scrimgeour C; Krogh PH
    Plant Biotechnol J; 2007 Jan; 5(1):60-8. PubMed ID: 17207257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual detection of genetically modified maize varieties in non-identity-preserved maize samples.
    Akiyama H; Sakata K; Kondo K; Tanaka A; Liu MS; Oguchi T; Furui S; Kitta K; Hino A; Teshima R
    J Agric Food Chem; 2008 Mar; 56(6):1977-83. PubMed ID: 18298063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic maize event TC1507: Global status of food, feed, and environmental safety.
    Baktavachalam GB; Delaney B; Fisher TL; Ladics GS; Layton RJ; Locke ME; Schmidt J; Anderson JA; Weber NN; Herman RA; Evans SL
    GM Crops Food; 2015; 6(2):80-102. PubMed ID: 26018138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compositional differences between near-isogenic GM and conventional maize hybrids are associated with backcrossing practices in conventional breeding.
    Venkatesh TV; Cook K; Liu B; Perez T; Willse A; Tichich R; Feng P; Harrigan GG
    Plant Biotechnol J; 2015 Feb; 13(2):200-10. PubMed ID: 25196222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trait stacking in transgenic crops: challenges and opportunities.
    Que Q; Chilton MD; de Fontes CM; He C; Nuccio M; Zhu T; Wu Y; Chen JS; Shi L
    GM Crops; 2010; 1(4):220-9. PubMed ID: 21844677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.